A CASE STUDY ON URBAN NON-POINT SOURCE POLLUTION CONTROL: THE HUIZHOU CHATING ECOLOGICAL REGULATION POND IN THE SHAHE RIVER BASIN OF THE DONGJIANG RIVER
-
摘要: 为探究华南城镇面源污染的季节性效能,应对下游感潮河段低溶解氧问题,以东江支流沙河流域惠州茶亭生态调蓄塘(ERP)为对象进行监测,分析污染物沿程的迁移转化过程和处理效能。结果表明:ERP中有机物和磷主要通过沉降、过滤、截留等物理过程去除,而氮主要通过生物硝化反硝化作用去除。此外,塘内局部DO浓度较高,反硝化过程被抑制,产生了NO-3-N积累。整体而言,在湿地/集水区面积比率为0.9%的条件下,ERP系统处理效能稳定,旱、雨两季COD、NH+4-N、TP、TN的平均削减率分别为8.4%、59.3%、66.7%、31.8%和23.2%、52.9%、51.5%、23.4%,除了TN和NO-3-N的去除能力受到限制外,其余指标旱季和雨季出水均优于GB 3838—2002《地表水环境质量标准》中Ⅴ类标准。研究结果可为周边城镇面源污染控制提供技术支撑。Abstract: To explore the seasonal efficiency of non-point source pollution in towns in South China, and deal with the low dissolved oxygen problem in the downstream tidal reach, this study took Huizhou Chating Ecological Regulation Pond (ERP) in Shahe River Basin, a tributary of Dongjiang River, as the monitoring object, and analyzed the migration and transformation process and treatment efficiency of pollutants along the river. The results showed that organic matter and phosphorus in ERP are mainly removed by sedimentation, filtration and retention, while nitrogen is mainly removed by biological nitrification and denitrification. In addition, the concentration of local dissolved oxygen in the pond is high, and the denitrification process is inhibited, resulting in NO-3-N accumulation. On the whole, under the condition of 0.9% wetland/catchment area ratio, the treatment efficiency of the ERP system was stable, and the average reduction rates of COD, NH+4-N, TP and TN were 8.4%, 59.3%, 66.7% and 31.8% and 23.2%, 52.9%, 51.5% and 23.4%, respectively, in drought and rain seasons. Except for the limited removal capacity of TN and NO-3-N, the other water quality indexes in the effluent complies with the Category V standard in the Environmental Quality Standard for Surface Water (GB 3838—2002), and the study can provide technical support for the control of non-point source pollution in surrounding towns.
-
[1] KIM J, PARK B, CHOI J, et al. Optimum detailed standards to control non-point source pollution priority management areas: centered on highland agriculture watershed[J]. Sustainability, 2021, 13(17):1-16. [2] OCKENDEN M C, DEASY C, QUINTON J N, et al. Keeping agricultural soil out of rivers: evidence of sediment and nutrient accumulation within field wetlands in the UK[J]. J Environ Manage, 2014, 135: 54-62. [3] 葛小君,黄斌,袁再健,等. 近20年来广东省农业面源污染负荷时空变化与来源分析[J].环境科学, 2022, 43(6): 3118-3127. [4] 李丹,郑丙辉,储昭升,等. 多塘湿地对降雨径流的截留特点[J].环境科学研究,2022, 35(7): 1605-1614. [5] 张志杰, 温飞, 张亚群,等. 区域尺度黄河流域面源污染负荷特征与来源解析[J]. 环境工程, 2022, 40(9): 81-88,142. [6] JONAS S S, KRAGH T, SAND-JENSEN K, et al. Environmental drivers and sources of stream oxygen consumption in an agricultural lake catchment[J]. Ecological Engineering, 2022, 176: 106516. [7] Sø J S, KRAGH T, SAND-JENSEN K, et al. Environmental drivers and sources of stream oxygen consumption in an agricultural lake catchment[J]. Ecological Engineering, 2022, 176:106516. [8] BHOMIA R K, CLEMENT A, LÁTRÁNYI-LOVÁSZ Z, et al. Case Studies of (semi) Constructed Wetlands Treating Point and Non-Point Pollutant Loads to Protect Downstream Natural Ecosystems[M]. Encyclopedia of Inland Waters, 2022: 300-317. [9] ZEDLER J B. Wetlands at Your Service: reducing impacts of agriculture at the watershed scale[J]. Frontiers in Ecology and the Environment, 2003, 1(2):65-72. [10] 郑丽丽, 张复港, 张彩琳,等. 河滩型复合人工湿地处理微污染河水的研究[J]. 水电能源科学, 2022, 40(10): 62-65,52. [11] YI X, LIN D, LI J, et al. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China[J]. Environ Sci Pollut Res Int, 2021, 28(30): 40075-40087. [12] LI D, ZHENG B, LIU Y, et al. Use of multiple water surface flow constructed wetlands for non-point source water pollution control[J]. Appl Microbiol Biotechnol, 2018, 102(13): 5355-5368. [13] CHEN W, HE B, NOVER D, et al. Farm ponds in southern China: challenges and solutions for conserving a neglected wetland ecosystem[J]. Sci Total Environ, 2019, 659: 1322-1334. [14] WU M, TANG X, LI Q, et al. Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province, China[J]. Water Air & Soil Pollution, 2013, 224(5):1-18. [15] 李丹,黄民生,郑丙辉,等. 洱海调蓄多塘湿地磷截留效果及影响因子研究[J].华东师范大学学报(自然科学版),2018, (6): 50-58,121. [16] 国家环境保护总局. 水和废水监测分析方法编委会.水和废水监测分析方法 [M].4版. 北京:中国环境科学出版社,2002. [17] 陆盛森,刘敏,左倬.长江大保护中尾水型人工湿地的应用研究:以江东水生态公园为例[J].环境工程,2023,41(1):181-188. [18] SØNDERUP M J, EGEMOSE S, HANSEN A S, et al. Factors affecting retention of nutrients and organic matter in stormwater ponds[J]. Ecohydrology, 2016, 9(5): 796-806. [19] 张晓一,陈盛,查丽娜,等.表面流人工湿地和复合型生态浮床处理污水厂尾水的脱氮性能分析[J].环境工程,2019,37(6): 46-51. [20] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1): 48-65. [21] 陶敏,贺锋,胡晗,等. 碳氧调控下人工湿地净化效果的协同与拮抗研究[J].中国环境科学,2015, 35(12):3646-3652. [22] 黄杉,怀静,吴娟,等.碳源补充促进人工湿地脱氮研究进展[J].水处理技术,2018,44(1):13-16. [23] DUNNE E J, REDDY K R. Phosphorus biogeochemistry of wetlands in agricultural watersheds[Z]. Nutrient Management in Agricultural Watersheds: A Wetlands Solution, 2005: 105-119. [24] LAVRNIĆ S, NAN X, BLASIOLI S, et al. Performance of a full scale constructed wetland as ecological practice for agricultural drainage water treatment in Northern Italy[J]. Ecological Engineering, 2020, 154:105927. [25] LI D, ZHENG B H, CHU Z S, et al. Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin[J]. Bioresour Technol, 2019, 280: 295-302. [26] 李丹. 流域多塘湿地氮磷截留影响因素及工程效率评估[D].上海:华东师范大学,2020. [27] 徐南军,李向阳,祁琳琳,等.生化生态组合人工湿地系统对城镇污水处理厂尾水的净化效果研究[J].环境工程,2015,33(7):46-50. [28] REDDY K R, KADLEC R H, FLAIG E, et al. Phosphorus retention in streams and wetlands: a review[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(1): 83-146.
点击查看大图
计量
- 文章访问数: 165
- HTML全文浏览量: 24
- PDF下载量: 19
- 被引次数: 0