SEPARATION PERFORMANCE OF OIL-WATER-SLUDGE IN HORIZONTAL GRID TUBES
-
摘要: 传统油田采出污水处理设备占地面积大,处理效率低,采用水平流网格管油水分离技术对其进行改造,探究其油水泥分离效果。通过Fluent软件模拟、室内实验、现场实验相结合的方式,研究水平流网格管内的油水泥三相分离规律。Fluent软件数值模拟结果表明,管长越长、流体流速越小,油水分离效果越好;入口含油量增大,出水含油量升高,6 m管长进口含油量应控制在0.1%以内。室内实验及现场实验结果同数值模拟结果基本一致,印证了数值模拟解释的油水泥分离规律。此外,现场实验中,入口流速为0.02~0.05 m/s、入口含油量为590~2710 mg/L时,出水油含量为63~86 mg/L、悬浮物含量为86~145 mg/L。网格管对油及悬浮物去除效果稳定,抗水质波动能力强,占地面积小,投资及运行成本低,具有一定的推广参考。Abstract: The transportation and treatment systems of traditional oil fields have large footprint and low efficiency, while the oil-water separation technology of horizontal flow grid tubes is used to transform, exploring energy savings and consumption reduction. The separation law of oil-water-sludge in horizontal grid tubes was studied by combining Fluent software simulation with indoor and field experiments. The numerical simulation results showed that the longer the tube length, the smaller the fluid flow rate, and the better the oil-water separation effect. The inlet oil content increased, and the effluent increased. The oil concentration at the inlet of the six-meter gird tube should be controlled within 0.1%. The results of laboratory and field experiments were basically consistent with the results of numerical simulation, which confirmed the oil-water-sludge separation law explained by numerical simulation. Field experiments have shown that when the inlet flow rate varied between 0.02 m/s to 0.05 m/s, and the inlet oil content varied between 590 mg/L to 2710 mg/L, the effluent oil content was 63 mg/L to 86 mg/L and the suspended solids content was 86 mg/L to 145 mg/L. The grid tube has a stable removal effect on oil and suspended solids, indicating strong resistance to water quality fluctuations. It occupies a small area and has low investment and operating cost.
-
Key words:
- horizontal grid tube /
- numerical simulation /
- oil-water-sludge separation /
- Fluent
-
[1] 党伟. 一体化预分水装置在稠油油田的现场试验[J]. 油气田地面工程,2019,38(8):19-22. [2] 胡长朝,党伟,谭文捷,等. 高效旋流气浮一体化预分水除油技术[J]. 科技导报,2014,32(8):39-43. [3] 党伟,胡长朝,王莉莉,等. 一体化预分水装置在高含水油田的应用[J]. 油气田地面工程,2016,35(1):91-93. [4] 陈家庆,王强强,肖建洪,等. 高含水油井采出液预分水技术发展现状与展望[J]. 石油学报,2020,41(11):1434-1444. [5] 苑丹丹,李璐,沈筱彦,等. 油田含油污水处理技术现状与研究进展[J]. 工业用水与废水,2023,54(3):1-5. [6] 刘东贤. 广西百色盆地田东油田污水处理及回注设计[J]. 化学工程与装备,2023,52(11):244-248. [7] YANG L, AZZOPARDI B J. Phase split of liquid-liquid two-phase flow at a horizontal T-junction[J]. International Journal of Multiphase Flow, 2007, 33(2): 207-216. [8] YANG L, AZZOPARDI B J, BELGHAZI A, et al. Phase separation of liquid-liquid two-phase flow at a T-junction[J]. AIChE Journal, 2006, 52(1): 141-149. [9] 李川宁. 高含水采出液 T 型管分离器的研发与应用[D].青岛:中国石油大学(华东), 2019. [10] 李全胜. 管式预脱在稠油处理中的应用[J]. 中国石油石化,2016,19(增刊2):56. [11] 解金良. 稠油采出液管式预脱水工艺技术研究与应用[J]. 石化技术,2019,26(7):41-42. [12] 梅洛洛,何利民,许仁辞. 复合T形管内稠油-水预分离性能的研究[J]. 流体机械,2016,44(2):1-6. [13] 田洋阳,崔之健,孙明龙,等. 高含水采出液T形管分离器的流场数值模拟[J]. 石油机械,2021,49(3):132-138. [14] 徐保蕊. T 形管油水分离器流场分布特性及分离性能研究[D].大庆:东北石油大学, 2012. [15] 王帅帅. 电场破乳-动态陶瓷膜串联组合含油污水处理研究[D].北京:北京石油化工学院, 2023. [16] 国家能源局. SY/T 5329—2012 碎屑岩油藏注水水质指标及分析方法[S]. 北京: 石油工业出版社, 2012.
点击查看大图
计量
- 文章访问数: 80
- HTML全文浏览量: 14
- PDF下载量: 13
- 被引次数: 0