CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电协同V2O5/微孔TiO2催化剂宽窗口脱硝

张宇晴 孙朋琨 童华

张宇晴, 孙朋琨, 童华. 介质阻挡放电协同V2O5/微孔TiO2催化剂宽窗口脱硝[J]. 环境工程, 2024, 42(6): 82-93. doi: 10.13205/j.hjgc.202406010
引用本文: 张宇晴, 孙朋琨, 童华. 介质阻挡放电协同V2O5/微孔TiO2催化剂宽窗口脱硝[J]. 环境工程, 2024, 42(6): 82-93. doi: 10.13205/j.hjgc.202406010
ZHANG Yuqing, SUN Pengkun, TONG Hua. WIDE WINDOW DENITRIFICATION OF V2O5/MICROPOROUS TiO2 UNDER SYNERGISTIC EFFECT OF DIELECTRIC BARRIER DISCHARGE PLASMA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 82-93. doi: 10.13205/j.hjgc.202406010
Citation: ZHANG Yuqing, SUN Pengkun, TONG Hua. WIDE WINDOW DENITRIFICATION OF V2O5/MICROPOROUS TiO2 UNDER SYNERGISTIC EFFECT OF DIELECTRIC BARRIER DISCHARGE PLASMA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 82-93. doi: 10.13205/j.hjgc.202406010

介质阻挡放电协同V2O5/微孔TiO2催化剂宽窗口脱硝

doi: 10.13205/j.hjgc.202406010
基金项目: 

国家重点研发计划项目 (2020YFC1807902)

详细信息
    作者简介:

    张宇晴(1997-),女,硕士研究生,主要研究方向为大气污染控制工程。292918507@163.com

    通讯作者:

    童华(1970-),男,副教授,主要研究方向为大气污染控制工程,环境材料及固体废弃物资源化。tonghua@mail.buct.edu.cn

WIDE WINDOW DENITRIFICATION OF V2O5/MICROPOROUS TiO2 UNDER SYNERGISTIC EFFECT OF DIELECTRIC BARRIER DISCHARGE PLASMA

  • 摘要: 活性窗口窄是钒钛基催化剂在介质阻挡放电NH3选择性催化还原(SCR)中的关键限制因素之一。采用水热法制备的V2O5/微孔TiO2催化剂,在介质阻挡放电的协同作用下具有明显的宽NH3-SCR活性窗口特征。通过对比空管、4V/TiO2和该微孔载体钒钛催化剂室温下的催化性能,以及催化剂在N2/O2、N2/O2/NH3、N2/O2/NO气氛下的反应行为,分析了该催化剂的催化反应机理,对微孔载体催化剂进行了硫水耐受性测试,并采用XRD、SEM、BET、XPS、TGA、FTIR等方法对材料的微观形貌结构特征等进行了分析。结果表明:4V/MP-TiO2催化剂的脱硝效率较常规钒钛催化剂提高了33.68%,在243~442 J/L内均能保持80%以上的脱硝效率,在降低能耗的同时具有良好的耐硫、水性能。这是由于微孔TiO2整体结构疏松,具有丰富的孔结构,改善了载体的孔容,提高了催化剂的分散性,为NH3提供了更多的活性吸附位点,有利于拓宽活性窗口,同时微孔TiO2提高了催化剂氧化NO的能力,有助于高能量密度区间快速SCR反应的进行。
  • [1] SHU H, LIU Y L, JIA Y. Synthesis of Cu-BTC by room temperature hydrothermal and its low temperature SCR denitration[J]. Journal of Molecular Structure, 2022, 1251:132046.
    [2] WEI Y X, LI D, QIAO J X, et al. Recovery of spent SCR denitration catalyst: a review and recent advances[J]. Journal of Environmental Chemical Engineering, 2023, 11(3):110104.
    [3] MIHAI O, WIDYASTUTI C R, KUMAR A, et al. The effect of NO2/NOx feed ratio on the NH3-SCR system over Cu-Zeolites with varying copper loading[J]. Catalysis Letters, 2013, 144(1): 70-80.
    [4] MOHAN S, DINESHA P, KUMAR S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review[J]. Chemical Engineering Journal, 2020, 384:123253.
    [5] 陆良樑, 潘孝庆, 潘衍行. 等离子体在NOx治理中的应用[J]. 上海电力学院学报, 2017, 33(3): 299-303.
    [6] CHEN J X, PAN K L, YU S J, et al. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal[J]. Environmental Science and Pollution Research, 2017, 24(26): 21496-21508.
    [7] HU H X, FAN X W, GONG X L, et al. Experimental study on plasma denitration by a bamboo based composite catalyst[J]. Chemical Engineering and Processing: Process Intensification, 2021, 166(19):108466.
    [8] WANG Z Y, KUANG H L, ZHANG J F, et al. Diesel engine exhaust denitration using non-thermal plasma with activated carbon[J]. Reaction Chemistry & Engineering, 2020, 5(9): 1845-1857.
    [9] TRONCONI E, NOVA I, CIARDELLI C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis, 2007, 245(1): 1-10.
    [10] ZHANG S L, ZHONG Q, WANG Y N. Effect of rutile phase on V2O5 supported over TiO2 mixed phase for the selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014, 314: 112-118.
    [11] XU J Q, CHEN G R, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia: review[J]. Chemical Engineering Journal, 2018, 353: 507-518.
    [12] LIU Y H C, ZHANG R X, HOU H Q, et al. NO reduction using low-temperature SCR assisted by a DBD method[J]. Plasma Science and Technology, 2018, 20(1): 10.1088/2058-6272/aa9326.
    [13] RAVI V, MOK Y S, RAJANIKANTH B S, et al. Studies on nitrogen oxides removal using plasma assisted catalytic reactor[J]. Plasma Science and Technology, 2003, 5(6): 2057-2062.
    [14] PHIL H H, REDDY M P, KUMAR P A, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis B: Environmental, 2008, 78(3/4): 301-308.
    [15] XU C, LIU J, ZHAO Z, et al. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb[J]. Journal of Environmental Sciences, 2015, 31(5):74-80.
    [16] LI C X, SHEN M Q, WANG J Q, et al. New insights into the promotional mechanism of ceria for activity and ammonium bisulfate resistance over V/WTi catalyst for selective catalytic reduction of NO with NH3[J]. Applied Catalysis A: General, 2018, 560: 153-164.
    [17] LIU X S, WU X D, XU T F, et al. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst[J]. Chinese Journal of Catalysis, 2016, 37(8): 1340-1346.
    [18] MA Z R, WU X D, FENG Y, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science: Materials International, 2015, 25(4): 342-352.
    [19] YOUN S, SONG I, LEE H, et al. Effect of pore structure of TiO2 on the SO2 poisoning over V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3[J]. Catalysis Today, 2018, 303: 19-24.
    [20] SONG I, YOUN S, LEE H, et al. Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 210: 421-431.
    [21] ZHANG Y J, TANG X L, YI H H, et al. The byproduct generation analysis of the NOx conversion process in dielectric barrier discharge plasma[J]. RSC Advances, 2016, 6(68): 63946-63953.
    [22] ZHANG Y R, NEYTS E C, BOGAERTS A. Influence of the material dielectric constant on plasma generation inside catalyst pores[J]. The Journal of Physical Chemistry C, 2016, 120(45): 25923-25934.
    [23] 王建强, 辛柏福, 于海涛, 等. 二氧化钛系列光催化剂的拉曼光谱[J]. 高等学校化学学报, 2003, 24(7): 1237-1240.
    [24] SONG I, YOUN S, LEE H, et al. CeO2-TiO2 catalyst prepared by physical mixing for selective catalytic reduction: evidence about the migration of sulfates from TiO2 to CeO2 via simple calcination[J]. The Korean Journal of Chemical Engineering, 2016, 33(9): 2547-2554.
    [25] MAQBOOL M S, PULLUR A K, HA H P. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2 catalyst for NH3-SCR[J]. Applied Catalysis B: Environmental, 2014, 152-153:28-37.
    [26] DUPIN J C, GONBEAU D, VINATIER P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324.
    [27] GRECZYNSKI G, PRIMETZHOFER D, Lu J, et al. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers[J]. Applied Surface Science, 2017, 396(1): 347-358.
    [28] PARVIZI N, RAHEMI N, ALLAHYARI S, et al. Synthesis of La0.8Zn0.2MnO3 nanocatalysts for decomposition of VOCs in a DBD plasma reactor; Influence of sol-gel parameters[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123:141-152.
    [29] SILVERSMIT G, DEPLA D, POELMAN H, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)[J]. Journal of Electron Spectroscopy and Related Phenomena, 2004, 135(2/3): 167-175.
    [30] TOPSOE N Y, DUMESIC J A, TOPSOE H. Vanadia/titania catalysts for selective catalytic reduction of nitric-oxide by ammonia[J]. Journal of Catalysis, 1995, 151(1): 241-252.
    [31] XU J Q, TANG T, ZHANG Q, et al. Remarkable low temperature catalytic activity for SCR of NO with propylene under oxygen-rich conditions over Mn0.2La0.07Ce0.05Ox/ZSM-5 catalyst[J]. Vacuum, 2021, 188(1), doi: 10.1016/j.vacuum.2021.110174.
    [32] ZHANG L, SHA X L, HE H b, et al. Synergistic catalytic removal NOx and the mechanism of plasma and hydrocarbon gas[J]. AIP Advances, 2016, 6(7): 4959813.
    [33] ITOH H, TAGUCHI M, SUZUKI S. Thermal decomposition of ozone at high temperature leading to ozone zero phenomena[J]. Journal of Physics D: Applied Physics, 2020, 53(18), doi: 10.1088/1361-6463/ab71a9.
    [34] WANG L, YI Y H, GUO Y J, et al. Synergy of DBD plasma and Fe-based catalyst in NH3 decomposition: plasma enhancing adsorption step[J]. Plasma Processes and Polymers, 2017, 14(6):201600111.
    [35] 胡志军, 王志良. 脉冲电晕放电低温等离子体分解NH3的动力学及机理研究[J]. 化工环保, 2017, 37(4): 466-470.
    [36] DORS M, MIZERACZYK J. NOx removal from a flue gas in a corona discharge-catalyst hybrid system[J]. Catalysis Today, 2004, 89(1/2): 127-133.
    [37] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
    [38] KUMA R, KITANO T, TSUJIGUCHI T, et al. Deactivation mechanism and enhanced durability of V2O5/TiO2-SiO2-MoO3 catalysts for NH3-SCR in the presence of SO2[J]. ChemCatChem, 2020, 12(23): 5938-5947.
    [39] ZHENG C Q, CHENG T, YANG L J, et al. Effect of SiO2 addition on NH4HSO4 decomposition and SO2 poisoning over V2O5-MoO3/TiO2-CeO2 catalyst[J]. Journal of Environmental Sciences, 2020, 91(5): 279-291.
    [40] MESSAOUDI R, YOUNSI A, MASSINES F, et al. Influence of humidity on current waveform and light emission of a low-frequency discharge controlled by a dielectric barrier[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(4): 537-543.
    [41] 万聪. 工业硅炉窑低温等离子体NO转化研究[D]. 杭州: 浙江大学, 2021.
    [42] HUANG Z G, ZHU Z P, LIU Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B: Environmental, 2002, 39(4): 361-368.
    [43] 吴迪. 硫酸铵热分解行为研究[D]. 沈阳: 沈阳工业大学, 2021.
    [44] 沈岳松, 祝社民, 丘泰, 等. Ti-Zr-V-O复合催化材料的制备及其选择性催化还原NO[J]. 无机材料学报, 2009, 24(3): 457-462.
    [45] SHI Y J, SHU H, ZHANG Y H, et al. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Processing Technology, 2016, 150: 141-147.
    [46] LI L D, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters. Ⅱ: mechanism study by in situ FTIR spectra[J]. Catalysis Today, 2010, 158(3/4): 361-369.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  2
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回