TECHNICAL STRATEGY AND AN ENGINEERING CASE ON ULTRA-LOW DISCHARGE OF HIGH FLUORIDE WASTEWATER RARE EARTH INDUSTRY
-
摘要: 针对某稀土化工厂产生的碱性高氟废水氟超低排放的问题,研究了除氟技术方案及其条件优化,并提出了工艺方案和开展了工程设计。结果表明:氟化钙化学沉淀法更适合高氟废水的除氟,钙氟比的增加有助于化学沉淀除氟效果的提升,但是,过量的CaCl2投加[c(Ca)∶c(F)>0.7]会导致污泥产量的急剧增加;而混凝沉淀更适合低氟废水(<20 mg/L)的进一步深度除氟,c(Al)∶c(F)为13.5且初始pH为6时,出水氟浓度可以稳定在约0.37 mg/L。并基于此提出了高氟废水超低排放工艺方案,开展了工程设计,利用企业产生的高钙酸性废水预处理碱性高氟废水后,再使用化学沉淀-混凝沉淀耦合工艺,可以使得出水氟浓度稳定达到<1.5 mg/L的排放标准。Abstract: Aiming at the problem of ultra-low fluorine discharge from alkaline high-fluorine wastewater produced by a rare earth chemical plant, the technical scheme and condition optimization of fluorine removal was studied. The process scheme was proposed, and an engineering design was carried out. The results showed that the calcium fluoride chemical precipitation method was more suitable for removing fluoride from high-fluorine wastewater. The increase in the calcium-fluorine ratio helped improve the effect of chemical precipitation. However, excessive CaCl2 dosing (Ca∶F>0.7) would lead to a sharp increase in sludge production, while coagulation sedimentation was more suitable for further deep fluoride removal of low-fluorine wastewater (<20 mg F/L). When the molar ratio of aluminum to fluorine was 13.5, and the initial pH was 6, the fluorine concentration of the effluent could be stabilized at about 0.37 mg/L. The ultra-low discharge process plan for high-fluorine wastewater was proposed, and the engineering design was carried out. The high-calcium acid wastewater produced by the enterprise was used to pretreat the alkaline high-fluoride wastewater, and then the chemical precipitation-coagulation precipitation coupling process was used to stabilize the fluorine concentration of the effluent, to meet the limiting value of the emission standard of 1.5 mg/L below.
-
[1] 冯俊生. 稀土冶炼酸性废水除氟试验研究[D]. 西安: 西安建筑科技大学, 2005. [2] 云敏瑞,云鹏,高晓玲. 包头市空气中氟化物污染变化趋势与治理效果分析[J]. 内蒙古环境保护, 2005, 3(4): 17-19. [3] 中华人民共和国环境保护部. 稀土工业污染物排放标准: GB 26451—2011[S]. 北京, 2011. [4] 北京市环境保护局. 水污染物综合排放标准: DB 11/307—2013[S]. 北京, 2013. [5] 张希祥,王煤,段德智. 氧化钙粉末处理高浓度含氟废水的实验研究[J]. 四川大学学报, 2001, 33(6): 111-113. [6] 鞠佳伟,高玉萍,何赞,等. pH对铝盐絮凝剂形态分布与混凝除氟性能的影响[J]. 环境工程学报, 2015, 9(6): 2563-2568. [7] 王玉坤,王翠华,顾宝群,等. 电渗析与反渗透技术在沧州农村分质供水中的除盐降氟效果分析[J]. 南水北调与水利科技, 2010, 8(4): 48-52. [8] 蒋颖. 化学沉淀-吸附复合工艺处理含氟选矿废水的研究[D]. 绵阳: 西南科技大学, 2020. [9] 刘旭. 沉淀-吸附组合工艺处理工业含氟废水的研究[D]. 北京: 北京化工大学, 2022. [10] 娄金生,刘金香,刘海波. 化学混凝沉淀—吸附法处理含氟废水研究[J]. 南华大学学报(自然科学版), 2009, 23(4): 102-106. [11] 上官平. 氟化钙反应结晶热力学和动力学研究[D]. 南昌: 南昌航空大学, 2016. [12] PARTHASARATHY N, BUFFLE J, HAERDI W. Combined use of calcium salts and polymeric aluminium hydroxide for defluoridation of waste waters[J]. Water Research, 1986, 20(4): 443-448. [13] TOYODA A, TAIRA T. A new method for treating fluorine wastewater to reduce sludge and running costs[J]. IEEE Transactions on Semiconductor Manufacturing, 2000, 13(3): 305-309. [14] 杜敏,杨道武,霍忠堂,等. 氢氧化钙清液加氯化钙处理酸性高浓度含氟废水[J]. 北方环境, 2013, 25(12): 119-121. [15] CHEN D H, ZHAO M Y, TAO X Y, et al. Exploration and optimisation of high-salt wastewater defluorination process[J]. Water, 2022, 14(23): 3974. [16] 余文娟,岳秀萍. 钙盐沉淀法处理氟微量超标饮用水[J]. 科学之友, 2012, 12(8): 135-136. [17] 彭丙瑞. 化学沉淀-混凝法处理电子工业含砷氟废水试验研究[D]. 北京: 北京林业大学, 2019. [18] 杨春,刘本洪,刘蕾,等. 普通硅酸盐水泥和钙盐对氟污染地表水的除氟效果[J]. 环境工程学报, 2022, 16(9): 2838-2849. [19] GUO F Q, JIA X P, LIANG S, et al. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresource Technology, 2020, 298(C): 122263. [20] 朱萍,夏斌,刘强,等. 氟化钙污泥提纯及资源化利用的研究现状[J]. 中国资源综合利用, 2022, 40(10): 104-111. [21] 赖星任,张龙辉,周加坤,等. 钨酸钠浓料铝盐除氟工艺探讨[J]. 中国冶金, 2021, 31(4): 118-121. [22] GONG W X, QU J H, LIU R P, et al. Effect of aluminum fluoride complexation on fluoride removal by coagulation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 395(1): 88-93.
点击查看大图
计量
- 文章访问数: 40
- HTML全文浏览量: 3
- PDF下载量: 3
- 被引次数: 0