CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁碳微电解处理典型工业废水研究进展

高静思 韩慧丽 陈纳 聂锦旭 朱佳 周建峰

高静思, 韩慧丽, 陈纳, 聂锦旭, 朱佳, 周建峰. 铁碳微电解处理典型工业废水研究进展[J]. 环境工程, 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008
引用本文: 高静思, 韩慧丽, 陈纳, 聂锦旭, 朱佳, 周建峰. 铁碳微电解处理典型工业废水研究进展[J]. 环境工程, 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008
GAO Jingsi, HAN Huili, CHEN Na, NIE Jinxu, ZHU Jia, ZHOU Jianfeng. A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008
Citation: GAO Jingsi, HAN Huili, CHEN Na, NIE Jinxu, ZHU Jia, ZHOU Jianfeng. A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008

铁碳微电解处理典型工业废水研究进展

doi: 10.13205/j.hjgc.202410008
详细信息
    作者简介:

    高静思(1984-),女,博士,副教授,主要研究方向城市水污染控制及供排水管理。gaojingsi@szpu.edu.cn

    通讯作者:

    周建峰(1992-),男,博士,主要研究方向为水污染控制及环境功能材料。zhoujianfeng@szpu.edu.cn

A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT

  • 摘要: 在众多工业废水处理工艺中,铁碳微电解技术具有不耗电、运营成本低、适用废水种类多、处理效率高、设备简单且易维护等特点,已被应用于处理印染废水、制药废水、焦化废水和电镀废水等领域。综述了铁碳微电解的作用原理等方面的研究进展,初始pH值、反应时间、铁碳比、曝气量、温度等对废水处理效果有显著影响的工艺条件的优化研究,以及铁碳微电解技术在印染、制药、焦化、造纸废水等典型工业废水处理中的应用现状,并探讨了铁碳微电解技术在应用过程中存在的瓶颈问题,以及相应的突破方向。
  • [1] AMIN A, Al B G, ABDEL-Fatah M A. Experimental study and mathematical model of coagulation/sedimentation units for treatment of food processing wastewater[J]. Ain Shams Engineering Journal, 2021, 12(1): 195-203.
    [2] KARTIC D N, NARAYANA B C A, ARIVAZHAGAN M. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach[J]. Journal of Environmental Management, 2017, 206(15): 69-76.
    [3] 王哨兵, 阮慧娟, 陆芊岑. Fenton氧化-耐盐菌联合处理环氧树脂生产废水[J]. 工业水处理, 2019, 39(6): 65-67.
    [4] 高天号, 陆雪梅, 徐炎华. 臭氧氧化-A2/O工艺处理含吡啶有机废水的研究[J]. 工业水处理, 2017, 37(5): 38-41.
    [5] YING D, XU X, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12): 2278-2286.
    [6] ZHU Q, GUO S, GUO C, et al. Stability of Fe-C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater[J]. Chemical Engineering Journal, 2014, 255: 535-540.
    [7] WANG D, MA W, HAN H, et al. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted[J]. Chemosphere, 2016, 164: 14-24.
    [8] LI P, LIU Z, WANG X, et al. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107.
    [9] 王毅博, 冯民权, 刘永红, 等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(8): 3188-3196.
    [10] 王毅博. 难降解工业废水的微电解及生物处理技术研究[D].西安:西安理工大学,2018.
    [11] HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247.
    [12] RUEDA-MARQUEZ J J, LEVCHUK I, MANZANO M, et al. Toxicity reduction of industrial and municipal wastewater by advanced oxidation processes (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton): a review[J]. Catalysts, 2020, 10(6): 612.
    [13] CHENG H, XU W, LIU J, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis[J]. Journal of Hazardous Materials, 2007, 146(1/2): 385-392.
    [14] 欧阳玉祝. 铁屑微电解法预处理工业废水的研究[D]. 长沙:湖南大学, 2002.
    [15] 曹宁. 含铁(Ⅲ)模拟废水的沉淀浮选净化研究[D]. 郑州:郑州大学, 2018.
    [16] 王永广, 杨剑锋. 微电解技术在工业废水处理中的研究与应用[J]. 环境污染治理技术与设备, 2002(4): 69-73.
    [17] 常邦, 胡伟武, 李文奇, 等. 新型铁碳微电解填料去除农村生活污水中的磷[J]. 水处理技术, 2017, 43(5): 48-51.
    [18] SONG N, XU J, CAO Y, et al. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis[J]. Chemosphere, 2020, 248: 125986.
    [19] ZHANG W, LI X, YANG Q, et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere, 2019, 216: 749-756.
    [20] 陈坤, 杨德敏. 铁碳微电解耦合H2O2工艺预处理抗生素制药废水试验研究[J]. 工业用水与废水, 2020, 51(5): 14-18.
    [21] ZHU X, CHEN X, YANG Z, et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2018, 338: 46-54.
    [22] LIU H, LI X, ZHANG X, et al. Study on nitrate removal from wastewater by micro-electrolysis and construction of iron-carbon micro-electrolysis reactor (ICMER)[J]. Chemical Engineering Science, 2023, 280: 119038.
    [23] LUO T, LI Q. Remediation of low C/N wastewater by iron-carbon micro-electrolysis coupled with biological denitrification: performance, mechanisms, and application[J]. Journal of Water Process Engineering, 2022, 48: 102899.
    [24] 储祺, 牛晓青, 张青灵, 等. 化学原料制药废水生化前处理试验研究[J]. 工业水处理, 2020, 40(12): 34-38

    ,44.
    [25] 马嘉敏, 宋伟, 张小磊, 等. 铁碳微电解降解磺胺甲恶唑和卡马西平[J]. 环境化学, 2019, 38(5): 985-990.
    [26] 曹美玲. 铁碳微电解、芬顿氧化及其组合工艺提高难降解有机废水可生化性的对比研究[D].赣州:江西理工大学, 2020.
    [27] YANG Z, MA Y, LIU Y, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414.
    [28] GUAN X, XU X, LU M, et al. Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis[J]. Energy Procedia, 2012, 17: 1655-1661.
    [29] 蔡峰, 王慧平. 铁碳微电解预处理垃圾渗滤液的研究[J]. 广东化工, 2020, 47(9): 163, 148.
    [30] ZHU K, WANG K, WU F, et al. The enhanced degradation of trichloroethylene in the bioelectrochemical system integrated with iron-carbon micro-electrolysis[J]. Journal of Water Process Engineering, 2024, 66: 105971.
    [31] SUN Z, XU Z, ZHOU Y, et al. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation[J]. Environmental Science and Pollution Research, 2019, 26: 26869-26882.
    [32] 朱小冬, 贠延滨, 马青青, 等. 化学絮凝法和微电解法预处理酯化废水研究[J]. 环境工程, 2016, 34(增刊1): 373-377.
    [33] 刘春早, 乔瑞平, 杨晨, 等.铁碳曝气微电解深度处理红霉素医药废水的研究[J]. 环境工程, 2015, 33(增刊1): 209-213.
    [34] LI P, LIU Z, WANG X, et al. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107.
    [35] 张利, 刘松, 胡耀笛, 等. 铁碳微电解预处理直接黄11废水试验研究[J]. 科学技术与工程, 2017, 17(2): 130-134.
    [36] 孟丹. 基于铁碳微电解法预处理镀铬废水的研究[D]. 绵阳: 绵阳师范学院, 2018.
    [37] 张兵. 生物技术处理印染废水研究进展[J]. 印染助剂, 2019, 36(4): 10-12.
    [38] 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797.
    [39] YANG B, GAO Y, YAN D, et al. Degradation characteristics of color index direct blue 15 dye using iron-carbon micro-electrolysis coupled with H2O2[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1523.
    [40] MALAKOOTIAN M, MAHDIZADEH H, KHAVARI M, et al. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103553.
    [41] 赵奭. 铁碳微电解-曝气膜生物反应器处理印染废水[J]. 水处理技术, 2019, 45(3): 35-37

    ,42.
    [42] 陆凯. 铁碳微电解-芬顿氧化-UBF复合工艺处理印染废水运行效果研究[J]. 环保科技, 2016, 22(6): 16-19.
    [43] 张岩. 制药废水处理技术研究进展[J]. 工业水处理, 2018, 38(5): 5-9.
    [44] CUI X, LI N, CHEN G, et al. Sludge based micro-electrolysis filler for removing tetracycline from solution[J]. Journal of Colloid and Interface Science, 2019, 534: 490-498.
    [45] MALAKOOTIAN M, KANNAN K, GHARAGHANI M A, et al. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103457.
    [46] 李胜海, 程谣, 许晓毅, 等. 铁碳微电解预处理含吡啶的有机废水[J]. 水处理技术, 2017, 43(2): 98-101.
    [47] 赵振辉, 伯绍毅, 章陆陆, 等. 中药生产废水处理工程实例[J]. 工业水处理, 2020, 40(11): 111-113.
    [48] 黄都都. Fe/C+H2O2+联合生化工艺处理制药废水[J]. 工业水处理, 2020, 40(6): 102-104.
    [49] 孙怡, 于亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势与实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756.
    [50] 李思敏, 刘建胜, 徐明, 等. 铁炭微电解-Fenton组合工艺深度处理焦化废水[J]. 工业用水与废水, 2016, 47(3): 22-27.
    [51] XIE R, WU M, QU G, et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences, 2018, 66: 165-172.
    [52] 吴永志. 一种焦化废水深度处理工艺的设计及工程应用[J]. 给水排水, 2017, 53(12): 62-66.
    [53] 邱敬贤, 刘君, 黄献. 电化学法处理电镀废水的研究进展[J]. 电镀与精饰, 2019, 41(10): 17-21.
    [54] 陈君丽, 李明. 铁碳填料对电镀清洗废水的微电解性能[J]. 电镀与环保, 2020, 40(2): 81-84.
    [55] 陈川, 周元祥, 范晨晨, 等. 微电解法处理化学镀铜废水[J]. 电镀与涂饰, 2016, 35(3): 159-163.
    [56] 刘淑蓉. 铁碳微电解-Fenton氧化-生化法联合处理含铬电镀废水[J]. 广东化工, 2014, 41(13): 212-214.
    [57] GAO J, WANG H, YANG Y, et al. Identification of microbial communities and functional genes in an anaerobic-anoxic-oxic (A2O) process in responding to the iron-carbon micro-electrolysis (ICME) pre-treatment of electroplating wastewater based on high-throughput sequencing[J]. Colloids and Surfaces C: Environmental Aspects, 2023, 1: 100009.
    [58] KANG Y, SUN H, GAO B, et al. Enhanced reduction of Cr(Ⅵ) in iron-carbon micro-electrolysis constructed wetlands: mechanisms of iron cycle and microbial interactions[J]. Chemical Engineering Journal, 2022, 439: 135742.
    [59] 许入义, 李孟, 谭斌, 等. 电镀工业园区废水处理工艺改造[J]. 中国给水排水, 2019, 35(14): 101-104.
    [60] 周霞. 水污染控制技术[M]. 广州: 广东高等教育出版社, 2014.
    [61] 王森, 肖雪莉, 程赛鸽, 等. 铁碳微电解联合过硫酸盐深度处理造纸废水的研究[J]. 工业水处理, 2020, 40(4): 71-75.
    [62] 莫立焕, 杨爽, 谈金强, 等. 规整化铁炭填料微电解深度处理制浆废水[J]. 华南理工大学学报(自然科学版), 2018, 46(6): 130-136.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  3
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 网络出版日期:  2024-11-30

目录

    /

    返回文章
    返回