A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT
-
摘要: 在众多工业废水处理工艺中,铁碳微电解技术具有不耗电、运营成本低、适用废水种类多、处理效率高、设备简单且易维护等特点,已被应用于处理印染废水、制药废水、焦化废水和电镀废水等领域。综述了铁碳微电解的作用原理等方面的研究进展,初始pH值、反应时间、铁碳比、曝气量、温度等对废水处理效果有显著影响的工艺条件的优化研究,以及铁碳微电解技术在印染、制药、焦化、造纸废水等典型工业废水处理中的应用现状,并探讨了铁碳微电解技术在应用过程中存在的瓶颈问题,以及相应的突破方向。Abstract: Among many industrial wastewater treatment technologies, iron-carbon micro-electrolysis technology has the characteristics of no extra power supply, low operating consumption, capability for many kinds of wastewater, high treatment efficiency, simple equipment and easy maintenance. The research progress on the mechanism of iron carbon micro electrolysis, the research results on the optimization of influencing factors, such as initial pH, reaction time, iron carbon ratio, aeration rate and temperature, as well as the application research status of iron carbon micro electrolysis technology in the treatment of typical industrial wastewater such as printing and dyeing, pharmaceutical, coking and papermaking wastewater are reviewed. The bottleneck problems in the application of iron carbon micro electrolysis technology and the corresponding breakthrough direction are also discussed.
-
[1] AMIN A, Al B G, ABDEL-Fatah M A. Experimental study and mathematical model of coagulation/sedimentation units for treatment of food processing wastewater[J]. Ain Shams Engineering Journal, 2021, 12(1): 195-203. [2] KARTIC D N, NARAYANA B C A, ARIVAZHAGAN M. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach[J]. Journal of Environmental Management, 2017, 206(15): 69-76. [3] 王哨兵, 阮慧娟, 陆芊岑. Fenton氧化-耐盐菌联合处理环氧树脂生产废水[J]. 工业水处理, 2019, 39(6): 65-67. [4] 高天号, 陆雪梅, 徐炎华. 臭氧氧化-A2/O工艺处理含吡啶有机废水的研究[J]. 工业水处理, 2017, 37(5): 38-41. [5] YING D, XU X, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12): 2278-2286. [6] ZHU Q, GUO S, GUO C, et al. Stability of Fe-C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater[J]. Chemical Engineering Journal, 2014, 255: 535-540. [7] WANG D, MA W, HAN H, et al. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted[J]. Chemosphere, 2016, 164: 14-24. [8] LI P, LIU Z, WANG X, et al. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107. [9] 王毅博, 冯民权, 刘永红, 等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展, 2018, 37(8): 3188-3196. [10] 王毅博. 难降解工业废水的微电解及生物处理技术研究[D].西安:西安理工大学,2018. [11] HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247. [12] RUEDA-MARQUEZ J J, LEVCHUK I, MANZANO M, et al. Toxicity reduction of industrial and municipal wastewater by advanced oxidation processes (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton): a review[J]. Catalysts, 2020, 10(6): 612. [13] CHENG H, XU W, LIU J, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis[J]. Journal of Hazardous Materials, 2007, 146(1/2): 385-392. [14] 欧阳玉祝. 铁屑微电解法预处理工业废水的研究[D]. 长沙:湖南大学, 2002. [15] 曹宁. 含铁(Ⅲ)模拟废水的沉淀浮选净化研究[D]. 郑州:郑州大学, 2018. [16] 王永广, 杨剑锋. 微电解技术在工业废水处理中的研究与应用[J]. 环境污染治理技术与设备, 2002(4): 69-73. [17] 常邦, 胡伟武, 李文奇, 等. 新型铁碳微电解填料去除农村生活污水中的磷[J]. 水处理技术, 2017, 43(5): 48-51. [18] SONG N, XU J, CAO Y, et al. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis[J]. Chemosphere, 2020, 248: 125986. [19] ZHANG W, LI X, YANG Q, et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere, 2019, 216: 749-756. [20] 陈坤, 杨德敏. 铁碳微电解耦合H2O2工艺预处理抗生素制药废水试验研究[J]. 工业用水与废水, 2020, 51(5): 14-18. [21] ZHU X, CHEN X, YANG Z, et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2018, 338: 46-54. [22] LIU H, LI X, ZHANG X, et al. Study on nitrate removal from wastewater by micro-electrolysis and construction of iron-carbon micro-electrolysis reactor (ICMER)[J]. Chemical Engineering Science, 2023, 280: 119038. [23] LUO T, LI Q. Remediation of low C/N wastewater by iron-carbon micro-electrolysis coupled with biological denitrification: performance, mechanisms, and application[J]. Journal of Water Process Engineering, 2022, 48: 102899. [24] 储祺, 牛晓青, 张青灵, 等. 化学原料制药废水生化前处理试验研究[J]. 工业水处理, 2020, 40(12): 34-38,44. [25] 马嘉敏, 宋伟, 张小磊, 等. 铁碳微电解降解磺胺甲恶唑和卡马西平[J]. 环境化学, 2019, 38(5): 985-990. [26] 曹美玲. 铁碳微电解、芬顿氧化及其组合工艺提高难降解有机废水可生化性的对比研究[D].赣州:江西理工大学, 2020. [27] YANG Z, MA Y, LIU Y, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. [28] GUAN X, XU X, LU M, et al. Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis[J]. Energy Procedia, 2012, 17: 1655-1661. [29] 蔡峰, 王慧平. 铁碳微电解预处理垃圾渗滤液的研究[J]. 广东化工, 2020, 47(9): 163, 148. [30] ZHU K, WANG K, WU F, et al. The enhanced degradation of trichloroethylene in the bioelectrochemical system integrated with iron-carbon micro-electrolysis[J]. Journal of Water Process Engineering, 2024, 66: 105971. [31] SUN Z, XU Z, ZHOU Y, et al. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation[J]. Environmental Science and Pollution Research, 2019, 26: 26869-26882. [32] 朱小冬, 贠延滨, 马青青, 等. 化学絮凝法和微电解法预处理酯化废水研究[J]. 环境工程, 2016, 34(增刊1): 373-377. [33] 刘春早, 乔瑞平, 杨晨, 等.铁碳曝气微电解深度处理红霉素医药废水的研究[J]. 环境工程, 2015, 33(增刊1): 209-213. [34] LI P, LIU Z, WANG X, et al. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere, 2017, 180: 100-107. [35] 张利, 刘松, 胡耀笛, 等. 铁碳微电解预处理直接黄11废水试验研究[J]. 科学技术与工程, 2017, 17(2): 130-134. [36] 孟丹. 基于铁碳微电解法预处理镀铬废水的研究[D]. 绵阳: 绵阳师范学院, 2018. [37] 张兵. 生物技术处理印染废水研究进展[J]. 印染助剂, 2019, 36(4): 10-12. [38] 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797. [39] YANG B, GAO Y, YAN D, et al. Degradation characteristics of color index direct blue 15 dye using iron-carbon micro-electrolysis coupled with H2O2[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1523. [40] MALAKOOTIAN M, MAHDIZADEH H, KHAVARI M, et al. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103553. [41] 赵奭. 铁碳微电解-曝气膜生物反应器处理印染废水[J]. 水处理技术, 2019, 45(3): 35-37,42. [42] 陆凯. 铁碳微电解-芬顿氧化-UBF复合工艺处理印染废水运行效果研究[J]. 环保科技, 2016, 22(6): 16-19. [43] 张岩. 制药废水处理技术研究进展[J]. 工业水处理, 2018, 38(5): 5-9. [44] CUI X, LI N, CHEN G, et al. Sludge based micro-electrolysis filler for removing tetracycline from solution[J]. Journal of Colloid and Interface Science, 2019, 534: 490-498. [45] MALAKOOTIAN M, KANNAN K, GHARAGHANI M A, et al. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103457. [46] 李胜海, 程谣, 许晓毅, 等. 铁碳微电解预处理含吡啶的有机废水[J]. 水处理技术, 2017, 43(2): 98-101. [47] 赵振辉, 伯绍毅, 章陆陆, 等. 中药生产废水处理工程实例[J]. 工业水处理, 2020, 40(11): 111-113. [48] 黄都都. Fe/C+H2O2+联合生化工艺处理制药废水[J]. 工业水处理, 2020, 40(6): 102-104. [49] 孙怡, 于亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势与实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. [50] 李思敏, 刘建胜, 徐明, 等. 铁炭微电解-Fenton组合工艺深度处理焦化废水[J]. 工业用水与废水, 2016, 47(3): 22-27. [51] XIE R, WU M, QU G, et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences, 2018, 66: 165-172. [52] 吴永志. 一种焦化废水深度处理工艺的设计及工程应用[J]. 给水排水, 2017, 53(12): 62-66. [53] 邱敬贤, 刘君, 黄献. 电化学法处理电镀废水的研究进展[J]. 电镀与精饰, 2019, 41(10): 17-21. [54] 陈君丽, 李明. 铁碳填料对电镀清洗废水的微电解性能[J]. 电镀与环保, 2020, 40(2): 81-84. [55] 陈川, 周元祥, 范晨晨, 等. 微电解法处理化学镀铜废水[J]. 电镀与涂饰, 2016, 35(3): 159-163. [56] 刘淑蓉. 铁碳微电解-Fenton氧化-生化法联合处理含铬电镀废水[J]. 广东化工, 2014, 41(13): 212-214. [57] GAO J, WANG H, YANG Y, et al. Identification of microbial communities and functional genes in an anaerobic-anoxic-oxic (A2O) process in responding to the iron-carbon micro-electrolysis (ICME) pre-treatment of electroplating wastewater based on high-throughput sequencing[J]. Colloids and Surfaces C: Environmental Aspects, 2023, 1: 100009. [58] KANG Y, SUN H, GAO B, et al. Enhanced reduction of Cr(Ⅵ) in iron-carbon micro-electrolysis constructed wetlands: mechanisms of iron cycle and microbial interactions[J]. Chemical Engineering Journal, 2022, 439: 135742. [59] 许入义, 李孟, 谭斌, 等. 电镀工业园区废水处理工艺改造[J]. 中国给水排水, 2019, 35(14): 101-104. [60] 周霞. 水污染控制技术[M]. 广州: 广东高等教育出版社, 2014. [61] 王森, 肖雪莉, 程赛鸽, 等. 铁碳微电解联合过硫酸盐深度处理造纸废水的研究[J]. 工业水处理, 2020, 40(4): 71-75. [62] 莫立焕, 杨爽, 谈金强, 等. 规整化铁炭填料微电解深度处理制浆废水[J]. 华南理工大学学报(自然科学版), 2018, 46(6): 130-136.
点击查看大图
计量
- 文章访问数: 49
- HTML全文浏览量: 3
- PDF下载量: 7
- 被引次数: 0