CHARACTERISTICS ANALYSIS OF PM2.5 AND O3 POLLUTION IN SHENYANG CITY
-
摘要: 为分析PM2.5与O3的污染特征,利用沈阳市新冠肺炎疫情期间的国控监测站点污染物数据,结合WRF-Chem模式分别对2次污染过程的气象环境与扩散情况在中尺度区域上进行模拟分析,利用HYSPLIT软件对污染过程进行传输通道分析、潜在源区分析和浓度权重分析。结果表明:疫情3年期间,PM2.5浓度一直处于下降状态,O3浓度在2021年处于极低值点。PM2.5与O3污染随季节波动,PM2.5污染呈现出明显的季节特征,秋冬季频发,且受逆温天气、高湿度、高大气稳定度、低风速等不良天气状况影响较大;而O3污染受高温影响明显。沈阳市1月污染物外部传输可能主要来源于北方,而春夏季O3污染外部传输主要受辽宁省南部及黄海区域影响。O3浓度呈现出明显的春夏季高,秋冬季低的特征,且午间浓度高于夜晚,易受回暖高温影响等特点。高强度太阳辐射、高温天气、静稳天气等会诱发O3污染。疫情期间减少人为排放有效降低了PM2.5污染,但对于O3污染未见明显影响。Abstract: To analyze the pollution characteristics of PM2.5 and O3, the meteorological environment and diffusion of the two pollution processes were simulated and analyzed on the mesoscale region, by using the pollutant data of the national control monitoring stations in Shenyang during the COVID-19 epidemic, and combined with WRF-Chem model. HYSPLIT software was used to analyze the transmission channel, potential source area, and concentration weight of the pollution process. The results showed that PM2.5 concentration had been declining during the three years of the epidemic, and O3 concentration was at an extremely low point in 2021. PM2.5 pollution and O3 pollution fluctuates with seasons. PM2.5 pollution shows obvious seasonal characteristics, more frequent in autumn and winter, and is greatly affected by adverse weather conditions such as temperature inversion, high humidity, high atmospheric stability, and low wind speed. O3 pollution is significantly affected by high temperatures. In January, the external transport of pollutants in Shenyang mainly comes from the north, while the external transport of O3 pollution in spring and summer is mainly affected by the southern Liaoning Province and the Yellow Sea region. The O3 concentration is obviously higher in spring and summer, and lower in autumn and winter, and higher at noon than at night, which is affected by warming and high temperature. High-intensity solar radiation, high-temperature weather, and static weather can induce ozone pollution. Reducing anthropogenic emissions during the epidemic effectively reduces PM2.5 pollution, but has no significant impact on O3 pollution.
-
Key words:
- PM2.5 /
- O3 /
- WRF-Chem /
- HYSPLIT /
- pollution characteristics
-
[1] 生态环境部. 2022年中国生态环境状况公报.https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202305/P020230529570623593284.pdf.https://www.mee.gov.cn/. [2] 肖致美,李源,孔君,等. 天津市PM2.5-O3复合污染特征及气象影响分析[J]. 环境科学,2022,43(6):2928-2936. [3] WANG Y Y, HU J L, ZHU J, et al. Health Burden and economic impacts attributed to PM2.5 and O3 in China from 2010 to 2050 under different representative concentration pathway scenarios[J]. Resour Conserv Recycl, 2021, 173: 105731. [4] 冯凝,唐梦雪,李孟林,等.深圳市城区VOCs对PM2.5和O3耦合生成影响研究[J].中国环境科学,2021,41(1):11-17. [5] XING J,WANG J D,MATHUR R,et al. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J]. Atmospheric Chemistry and Physics,2017,17(16): 9869-9883. [6] 戴海夏,安静宇,黄成,等. 长江三角洲区域大气PM2.5和臭氧污染协同控制路径[J]. 科学通报,2022,67(18):2100-2112. [7] BAO R, ZHANG A C. Does lockdown reduce air pollution Evidence from 44 cities in northern China[J]. Total Environ, 2020, 731, 139052. [8] PEI Z M, CHEN X W, LI X D, et al. Impact of macroeconomic factors on ozone precursor emissions in China[J]. Clean Prod, 2022, 344:130974. [9] HUANG X, DING A J, GAO J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China[J]. National Science Review, 2021, 8(2):51-59. [10] ZHENG H, KONG S, CHEN N, et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19[J]. Science of the Total Environment, 2020,739:141234. [11] LI L, LI Q, HUANG L, et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: an insight into the impact of human activity pattern changes on air pollution variation[J]. Science of the Total Environment, 2020,55(7821):139282. [12] ANNELA A, OLIVIER D, FENGMING X, et al. China’s air pollution reduction efforts may result in an increase in surface ozone levels in highly polluted areas[J]. Ambio, 2016,45(2):1-12. [13] 祁宏,张小玲,康平,等. COVID-19疫情期间成都市地面臭氧污染特征及气象成因分析[J]. 环境科学学报,2021,41(10):4200-4211. [14] PIERRE S, PAOLA C, ALESSANDRA D M, rt al. High spatial resolution WRF-Chem model over Asia: physics and chemistry evaluation[J]. Atmospheric Environment, 2021,244:118004. [15] 张宸赫,王东东,赵天良,等. 基于WRF-Chem和EMI指数的新冠肺炎疫情期间沈阳市大气污染物浓度变化原因分析[J]. 环境科学学报, 2021,41(9):3709-3716. [16] 常炉予,许建明,周广强,等. 上海典型持续性PM2.5重度污染的数值模拟[J]. 环境科学, 2016,37(3):825-833. [17] 李玉婷,谭贵蓉,何兴潼,等. 基于HYSPLIT模式的泸州特大暴雨水汽输送特征分析[J]. 高原山地气象研究, 2020,40(2):49-52. [18] 许君利,韩海东,王建. 新疆大气PM2.5来源与潜在贡献源分析[J]. 干旱区研究, 2023,40(6):874-884. [19] 徐红,陈军庆,何斗太,等. 1980—2015年沈阳地区采暖期霾天气气候特征[J]. 气象与环境学报, 2017,33(2):87-94. [20] 王闯,王帅,杨碧波,等. 气象条件对沈阳市环境空气臭氧浓度影响研究[J]. 中国环境监测, 2015,31(3):32-37. [21] 刘咸德,李军,赵越,等. 北京地区大气颗粒物污染的风向因素研究[J]. 中国环境科学, 2010,30(1):1-6. [22] 李正,张昊,叶辉,等. 杭州市典型雾霾期污染特征及污染源的HYSPLIT模型分析[J].环境科学学报,2018,38(5):1717-1726. [23] 张芊,庞可,马彩云,等. 甘肃地区春冬季颗粒物输送路径及潜在源分析:基于HYSPLIT4模式及TraPSA分析平台[J]. 中国环境科学,2022,42(2):509-518. [24] LIU T, WANG X Y, HU J L, et al. Driving forces of changes in air quality during the COVID-19 lockdown period in the Yangtze River Delta region[J]. Environmental Science & Technology Letters, 2020, 7:779-786. [25] 周磊,武建军,贾瑞静,等. 京津冀PM2.5时空分布特征及其污染风险因素[J]. 环境科学研究,2016,29(4):483-493. [26] 潘本锋,程麟钧,王建国,等. 京津冀地区臭氧污染特征与来源分析[J]. 中国环境监测,2016,32(5):17-23. [27] 黄亮. 我国臭氧污染特征及现状分析[J]. 环境保护与循环经济,2014,34(5):64-66. [28] LI N, HE Q Y, JIM G, et al. Impacts of biogenic and anthropogenic emissions on summertime ozone formation in the Guanzhong Basin[J]. Atmospheric Chemistry and Physics, 2018, 18: 7489-7507. [29] 刘闽,王闯,侯乐,等. 沈阳臭氧污染时空分布特征及变化趋势[J]. 中国环境监测, 2017, 33(4):126-131. [30] 玛依拉·热西丁,丁建丽,张喆,等. 乌鲁木齐市气溶胶光学厚度时空分布特征及潜在来源分析[J]. 环境科学学报,2020,40(5):1611-1620. [31] YIN Z C, WANG H J. Role of atmospheric circulations in haze pollution in December 2016[J]. Atmospheric Chemistry and Physics, 2017, 17(18): 11673-11681. [32] WANG J, HAN J T, LI T N, et al. Impact analysis of meteorological variables on PM2.5 pollution in the most polluted cities in China[J]. Heliyon, 2023, 9(7): e17609. [33] 高木木,孙学斌,陈杨. 气象因素对沈阳臭氧浓度的影响研究[J]. 绿色科技,2022,24(22):171-174, 180. [34] GUO H, LING Z H, CHENG H R, et al. Tropospheric volatile organic compounds in China[J]. Science of the Total Environment, 2017, 574:1021-1043. [35] CHEN S P, CHANG C C, LIU J J, et al. Recent improvement in air quality is evidenced by the island-wide monitoring network in Taiwan[J]. Atmos Environ, 2014, 96:70-77. [36] LIU Y M, WANG T. Worsening urban ozone pollution in China from 2013 to 2017-Part 2: the effects of emission changes and implications formulti-pollutant control[J]. Atmos Chem Phys, 2020, 20 (11): 6323-6337. [37] MENG Z, DABDUB D, SEINFELD J H. Chemical coupling between atmospheric ozone and particulate matter[J]. Science, 1997, 277(5322):116-119. [38] RAVISHANKARA R A. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315):1058-1065.
点击查看大图
计量
- 文章访问数: 26
- HTML全文浏览量: 2
- PDF下载量: 1
- 被引次数: 0