中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新污染物的水环境伦理问题及对策

胡洪营 夏军 陈卓 李竣 王玉明 蔡涵颖 周巧红 王斌 薛颖

胡洪营, 夏军, 陈卓, 李竣, 王玉明, 蔡涵颖, 周巧红, 王斌, 薛颖. 新污染物的水环境伦理问题及对策[J]. 环境工程, 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001
引用本文: 胡洪营, 夏军, 陈卓, 李竣, 王玉明, 蔡涵颖, 周巧红, 王斌, 薛颖. 新污染物的水环境伦理问题及对策[J]. 环境工程, 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001
HU Hongying, XIA Jun, CHEN Zhuo, LI Jun, WANG Yuming, CAI Hanying, ZHOU Qiaohong, WANG Bin, XUE Ying. Ethical issues and countermeasures regarding emerging contaminants in water environment[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001
Citation: HU Hongying, XIA Jun, CHEN Zhuo, LI Jun, WANG Yuming, CAI Hanying, ZHOU Qiaohong, WANG Bin, XUE Ying. Ethical issues and countermeasures regarding emerging contaminants in water environment[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 1-11. doi: 10.13205/j.hjgc.202501001

新污染物的水环境伦理问题及对策

doi: 10.13205/j.hjgc.202501001
基金项目: 

中国科学院学部科技伦理研究项目(XBKJLL2024001)

国家自然科学基金重大项目(52293440)

详细信息
    作者简介:

    胡洪营(1963-),男,教授,主要研究方向为再生水安全高效利用理论与技术。hyhu@tsinghua.edu.cn

    通讯作者:

    胡洪营(1963-),男,教授,主要研究方向为再生水安全高效利用理论与技术。hyhu@tsinghua.edu.cn

Ethical issues and countermeasures regarding emerging contaminants in water environment

  • 摘要: 随着化学品的大量生产和使用,持久性有机污染物、内分泌干扰物、抗生素和微塑料等新污染物在水环境中广泛检出,给水生态环境安全和人体健康带来了新的挑战。文章系统介绍了新污染物的概念、来源和分类,总结了其危害及现有控制技术,分析了新污染物涉及的主要环境伦理问题。以双酚A等为例,探讨了新污染物使用及处理处置过程中所涉及的自然权利、环境公平、代际公平等环境伦理问题,提出了应对新污染物水环境伦理问题的对策和建议。今后,需进一步从技术和管理层面深入探讨新污染物的控制方法和政策措施,以期为我国水环境保护和安全保障提供伦理方面的理论与实践支撑。
  • [1] BLETSOU A A, JEON J, HOLLENDER J, et al. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2015, 66:32-44.
    [2] 都仲秋. 系统观视阈下新污染物治理的法治障碍与改善路径[J]. 华北电力大学学报, 2024, 5(1): 43-54.

    DO Z Q. Law barriers to systematic governance of new pollutants in China and the path to improvement[J]. Journal of North China Electric Power University, 2024, 5(1): 43-54.
    [3] 中华人民共和国国务院办公厅. 国务院办公厅关于印发新污染物治理行动方案的通知[R]. 中华人民共和国国务院公报, 2022, 16: 34-39. General Office of the State Council of the People’s Republic of China. The General Office of the State Council Issued an Action Plan on Further Controlling New Pollutants[R]. Gazette of the State Council of the People’s Republic of China, 2022

    , 16: 34-39.
    [4] 赵淑莉, 陈少坤, 于秀豪, 等. 美丽中国建设过程中重点关注的新污染物监测研究[J]. 中国环境科学, 2024, 44(8): 4576-4587.

    ZHAO S L, CHEN S K, YU X H, et al. Study on monitoring widespread concerned emerging contaminants under the construction of the Beautiful China[J]. China Environmental Science, 2024, 44(8): 4576-4587.
    [5] 夏军, 鲁晓, 朱彤, 等. 环境伦理研究和实践面对的机遇与挑战[J]. 中国科学:地球科学, 2024, 54(9): 2783-2788.

    XIA J, LU X, ZHU T, et al. Opportunities and challenges in environmental ethics research and practice[J]. Scientia Sinica Terrae, 2024, 54(9): 2783-2788.
    [6] WANG B, YU G. Emerging contaminant control: from science to action[J]. Frontiers of Environmental Science Engineering in Life Sciences, 2022, 16(6): 81.
    [7] WANG B, SUI Q, LIU H, et al. Promoting environmental risk assessment and control of emerging contaminants in China[J]. Engineering, 2024, 37:13-17.
    [8] LAPWORTH D, BARAN N, STUART M, et al. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence[J]. Environmental pollution, 2012, 163:287-303.
    [9] WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field[J]. Environmental Pollution, 2017, 231:954-70.
    [10] KHAN S, NAUSHAD M, GOVARTHANAN M, et al. Emerging contaminants of high concern for the environment: current trends and future research[J]. Environmental Research, 2022, 207:112609.
    [11] SINGH J, YADAV P, PAL A K, et al. Sensors in Water Pollutants Monitoring: Role of Material[M]. Singapore: Springer Singapore, 2020.
    [12] BENNY S M, GUPTA S D, ISMAIL S P, et al. Handbook of Water Pollution[M]. New York: John Wiley and Sons, Inc., 2024.
    [13] BETHANIS J, GOLIA E E. Micro-and nano-plastics in agricultural soils: a critical meta-analysis of their impact on plant growth, nutrition, metal accumulation in plant tissues and crop yield[J]. Applied Soil Ecology, 2024, 194:105202.
    [14] GOMES I B, SIMÕES L C, SIMÕES M. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states[J]. Science of the Total Environment, 2018, 643:1348-1356.
    [15] VASILACHI I C, ASIMINICESEI D M, FERTU D I, et al. Occurrence and fate of emerging pollutants in water environment and options for their removal[J]. Water, 2021, 13(2): 181.
    [16] METHNENI N, MORALES-GONZÁLEZ J A, JAZIRI A, et al. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: ecotoxicology appraisal via a battery of biotests[J]. Environmental Research, 2021, 196:110956.
    [17] HUANG Y, YOU Y, WU M, et al. Chemical characterization and source attribution of organic pollutants in industrial wastewaters from a Chinese chemical industrial park[J]. Environmental Research, 2023, 229:115980.
    [18] GKIKA D A, TOLKOU A K, EVGENIDOU E, et al. Fate and removal of microplastics from industrial wastewaters[J]. Sustainability, 2023, 15(8): 6969.
    [19] UWAMAHORO C, JO J H, JANG S I, et al. Assessing the risks of pesticide exposure: implications for endocrine disruption and male fertility[J]. International Journal of Molecular Sciences, 2024, 25(13): 6945.
    [20] MIRANDA R A, SILVA B S, DE MOURA E G, et al. Pesticides as endocrine disruptors: programming for obesity and diabetes[J]. Endocrine, 2023, 79(3): 437-447.
    [21] YUAN X, LV Z, ZHANG Z, et al. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: occurrence, contamination, and transmission[J]. Toxics, 2023, 11(5): 420.
    [22] ADENAYA A, BERGER M, BRINKHOFF T, et al. Usage of antibiotics in aquaculture and the impact on coastal waters[J]. Marine Pollution Bulletin, 2023, 188: 114645.
    [23] CHANG D, MAO Y, QIU W, et al. The source and distribution of tetracycline antibiotics in China: a review[J]. Toxics, 2023, 11(3): 214.
    [24] CHAABAN T, EZZEDDINE Z, GHSSEIN G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: a cross-sectional study[J]. COVID, 2024, 4(7): 921-929.
    [25] WIDOWATI I, BUDAYANTI N N S, JANURAGA P P, et al. Self-medication and self-treatment with short-term antibiotics in Asian countries: a literature review[J]. Pharm Educ, 2021, 21(2): 152-162.
    [26] BHAT M A. A comprehensive characterization of indoor ambient microplastics in households during the COVID-19 pandemic[J]. Air Quality, Atmosphere Health, 2024: 1-17.
    [27] JESSIELEENA A, RATHINAVELU S, VELMAIEL K E, et al. Residential houses: a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour[J]. Environmental Science Pollution Research, 2023, 30(26): 67919-67940.
    [28] LUTTERBECK C A, COLARES G S, DELL’OSBEL N, et al. Hospital laundry wastewaters: a review on treatment alternatives, life cycle assessment and prognosis scenarios[J]. Journal of Cleaner Production, 2020, 273:122851.
    [29] FATIMAZAHRA S, LATIFA M, LAILA S, et al. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance[J]. Environmental Monitoring Assessment, 2023, 195(3): 393.
    [30] LIU K, GAN C, GAN Y, et al. Occurrence and source identification of antibiotics and antibiotic resistance genes in groundwater surrounding urban hospitals[J]. Journal of Hazardous Materials, 2024, 465: 133368.
    [31] NASRABADI A E, RAMAVANDI B, BONYADI Z, et al. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: identification, occurrence, characteristics, fate, and transport[J]. Chemosphere, 2024, 356:141873.
    [32] PODLASEK A, VAVERKOVÁ M D, JAKIMIUK A, et al. A comprehensive investigation of geoenvironmental pollution and health effects from municipal solid waste landfills[J]. Environmental Geochemistry, 2024, 46(3): 97.
    [33] JAAFARZADEH N, TALEPOUR N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review[J]. Journal of Environmental Health Science Engineering, 2024, 22(1): 1-12.
    [34] PRATIWI O A, ACHMADI U F, KURNIAWAN R. Microplastic pollution in landfill soil: emerging threats the environmental and public health[J]. Environmental Analysis, Health Toxicology reports, 2024, 39(1):e2024009-e2024000.
    [35] WAN D, WANG H, POZDNYAKOV I P, et al. Formation and enhanced photodegradation of chlorinated derivatives of bisphenol A in wastewater treatment plant effluent[J]. Water Research, 2020, 184:116002.
    [36] KODEŠOVÁ R, ŠVECOVÁ H, KLEMENT A, et al. Contamination of water, soil, and plants by micropollutants from reclaimed wastewater and sludge from a wastewater treatment plant[J]. Science of the Total Environment, 2024, 907:167965.
    [37] WANG B, XU Z, DONG B J J O H M. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: a review[J]. Journal of Hazardous Materials, 2024, 469:133925.
    [38] LIU J, YANG F, CAI Y, et al. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China[J]. Eco-Environment Health, 2024, 3(1): 21-29.
    [39] AKHTAR A B T, NASEEM S, YASAR A, et al. Persistent organic pollutants (POPs): sources, types, impacts, and their remediation[J]. Environmental Pollution Remediation, 2021: 213-246.
    [40] SAID T O, EL ZOKM G M. Classifications, sources, and significant features of POPs in aquatic environment with special reference to dirty dozen[M]//Persistent Organic Pollutants in Aquatic Systems: Classification, Toxicity, Remediation and Future. Springer. 2024: 1-26.
    [41] KAHN L G, PHILIPPAT C, NAKAYAMA S F, et al. Endocrine-disrupting chemicals: implications for human health[J]. The Lancet Diabetes Endocrinology, 2020, 8(8): 703-718.
    [42] DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342.
    [43] CANO R, PÉREZ J L, DÁVILA L A, et al. Role of endocrine-disrupting chemicals in the pathogenesis of non-alcoholic fatty liver disease: a comprehensive review[J]. International Journal of Molecular Sciences, 2021, 22(9): 4807.
    [44] MONNERET C. What is an endocrine disruptor?[J]. Comptes Rendus Biologies, 2017, 340(9/10): 403-405.
    [45] PANCU D F, SCURTU A, MACASOI I G, et al. Antibiotics: conventional therapy and natural compounds with antibacterial activity: a pharmaco-toxicological screening[J]. Antibiotics, 2021, 10(4): 401.
    [46] AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Critical Reviews in Environmental Science Technology, 2020, 50(19): 2016-2059.
    [47] HALE R C, SEELEY M E, LA GUARDIA M J, et al. A global perspective on microplastics[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2018JC014719.
    [48] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597.
    [49] 李孟琴. 中国持久性有机污染物和新型污染物的环境行为研究[J]. 热带农业工程, 2023, 47(3): 153-155.

    LI M Q. Research on the environmental behavior of organic pollutants and new pollutants of persistence in China[J]. Tropical Agricultural Engineering, 2023, 47(3): 153-155.
    [50] 雒建伟, 高良敏, 陈一佳, 等. 持久性有机污染物(POPs)的环境问题及其治理措施研究进展[J]. 环保科技, 2016, 22(6): 51-55

    ,60. LUO J W, GAO L M, CHEN Y J, et al. Research progress on the environmental problems and treatment measures of persistent organic pollutants[J]. Environmental Technology, 2016, 22(6): 51-55, 60.
    [51] PATRIARCA C, SEDANO-NU'ÑEZ V T, GARCIA S L, et al. Character and environmental liability of cyanobacteria-derived dissolved organic matter[J]. Limnology Oceanography, 2021, 66(2): 496-509.
    [52] LU S, BUEKENS A, CHEN T, et al. Dioxins and dioxin-like compounds[J]. Handbook on Characterization of Biomass, Biowaste Related By-products, 2020, 1211-1265.
    [53] LIU L, QU Y, HUANG J, et al. Per-and polyfluoroalkyl substances (PFASs) in Chinese drinking water: risk assessment and geographical distribution[J]. Environmental Sciences Europe, 2021, 33: 1-12.
    [54] GRANDJEAN P, CLAPP R. Perfluorinated alkyl substances: emerging insights into health risks[J]. New Solutions: A Journal of Environmental Occupational Health Policy, 2015, 25(2): 147-63.
    [55] 刘宝印, 荀斌, 黄宝荣, 等. 我国水环境中新污染物空间分布特征分析[J]. 环境保护, 2021, 49(10): 25-30.

    LIU B Y, XUN B, HUANG B R, et al. Spatial differentiation characteristics of new pollutants in China’s water environment[J]. Environmental Protection, 2021, 49(10): 25-30.
    [56] 张翠. 海藻及其生物基材料对典型环境内分泌干扰物的去除作用与影响机制研究[D]. 烟台:中国科学院大学, 2019. ZHANG C. Removal and Influential Mechanisms of Typical Endocrine Disrupting Chemicals by Algae and Algal-Based Materials[D]. Yantai: University of Chinese Academy of Sciences, 2019.
    [57] JACKSON L, KLERKS P. Effects of the synthetic estrogen 17α-ethinylestradiol on Heterandria formosa populations: does matrotrophy circumvent population collapse?[J]. Aquatic Toxicology, 2020, 229: 105659.
    [58] KINCH C D, IBHAZEHIEBO K, JEONG J-H, et al. Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish[J]. Proceedings of the National Academy of Sciences, 2015, 112(5): 1475-1480.
    [59] YANG M, QIU J, ZHAO X, et al. 6-benzylaminopurine exposure induced development toxicity and behaviour alteration in zebrafish (Danio rerio)[J]. Environmental Pollution, 2021, 278: 116887.
    [60] RIVAS CHEN F, CHEFETZ B, THOMPSON M L, 0047-2425[R]: Wiley Online Library, 2021.
    [61] ASHBOLT N J, AMÉZQUITA A, BACKHAUS T, et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance[J]. Environmental Health Perspectives, 2013, 121(9): 993-1001.
    [62] LI W C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil[J]. Environmental Pollution, 2014, 187: 193-201.
    [63] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: a review of the European scenario[J]. Environment International, 2016, 94:736-57.
    [64] 徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3): 11-27.

    XU Y G, YU W T, MA Q, et al. The antibiotic in environment and its ecotoxicity: a review[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 11-27.
    [65] 胡莹莹 王菊英, 马德毅. 近岸养殖区抗生素的海洋环境效应研究进展[J]. 海洋环境科学, 2004, 4(4): 76-80.

    HU Y Y, WANG J Y, MA D Y. Research progress on environmental effect of antibiotic agents in marine aquaculture[J]. Marine Environmental Science, 2004, 4(4): 76-80.
    [66] 王兰. 抗生素污染现状及对环境微生态的影响[J]. 药物生物技术, 2006, 2(2): 144-148.

    WANG L. The Current situation of antibiotics pollution and the effect on environmental microcosm[J]. Pharmaceutical Biotechnology, 2006, 2(2): 144-148.
    [67] AHMED R, HAMID A K, KREBSBACH S A, et al. Critical review of microplastics removal from the environment[J]. Chemosphere, 2022, 293: 133557.
    [68] BOUWMEESTER H, HOLLMAN P C, PETERS R J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology[J]. Environmental Science Technology, 2015, 49(15): 8932-8947.
    [69] ZHAN Z, WANG J, PENG J, et al. Sorption of 3, 3', 4, 4'-tetrachlorobiphenyl by microplastics: a case study of polypropylene[J]. Marine Pollution Bulletin, 2016, 110(1): 559-563.
    [70] SCOPETANI C, CINCINELLI A, MARTELLINI T, et al. Ingested microplastic as a two-way transporter for PBDEs in Talitrus saltator[J]. Environmental Research, 2018, 167: 411-417.
    [71] VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure[J]. Environmental Science Technology, 2012, 46(20): 11327-11335.
    [72] SOLLEIRO-VILLAVICENCIO H, GOMEZ-DE LEÓN C T, DEL RÍO-ARAIZA V H, et al. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system[J]. Birth Defects Research, 2020, 112(17): 1326-1340.
    [73] 陈启晴, 杨守业, HOLLERT H, 等. 微塑料污染的水生生态毒性与载体作用[J]. 生态毒理学报, 2018, 13(1): 16-30.

    CHEN Q Q, YANG S Y, HOLLERT H, et al. The ecotoxicity and carrier function of microplastics in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 16-30.
    [74] SANCHEZ W, BENDER C, PORCHER J M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence[J]. Environmental Research, 2014, 128: 98-100.
    [75] LU Y, ZHANG Y, DENG Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science Technology, 2016, 50(7): 4054-4060.
    [76] 黄显雷. 新污染物的危害与治理[J]. 生态经济, 2023, 39(8): 5-8.

    HUANG X L. Hazards and management of emerging contaminants[J]. Ecological Economy, 2023, 39(8): 5-8.
    [77] ARTHAM T, DOBLE M. Bisphenol A and metabolites released by biodegradation of polycarbonate in seawater[J]. Environmental Chemistry Letters, 2012, 10(1): 29-34.
    [78] CONGWEN L, YUNLIN W, SHENTING Z, et al. Advanced methods to analyze steroid estrogens in environmental samples[J]. Environmental Chemistry Letters, 2020, 18(3): 543-559.
    [79] VIEIRA W T, DE FARIAS M B, SPAOLONZI M P, et al. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation: a review[J]. Environmental Chemistry Letters, 2020, 18(4): 1113-1143.
    [80] MAO J, HONG W, LI Q, et al. The application strategies and progresses of silicon-based minerals in advanced oxidation processes for water decontamination[J]. Coordination Chemistry Reviews, 2024, 511: 215871.
    [81] DU X, YANG W, ZHAO J, et al. Peroxymonosulfate-assisted electrolytic oxidation/coagulation combined with ceramic ultrafiltration for surface water treatment: membrane fouling and sulfamethazine degradation[J]. Journal of Cleaner Production, 2019, 235: 779-88.
    [82] AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186(P1): 55-63.
    [83] PIMENTEL J A I, DONG C D, GARCIA-SEGURA S, et al. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation[J]. Science of the Total Environment, 2021, 781: 146411.
    [84] BUCHNER E M, HAPPEL O, SCHMIDT C K, et al. Approach for analytical characterization and toxicological assessment of ozonation products in drinking water on the example of acesulfame[J]. Water Research, 2019, 153: 357-368.
    [85] CHEN Y Y, MA Y L, YANG J, et al. Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway[J]. Chemical Engineering Journal, 2017, 307: 15-23.
    [86] MA X, WU T, ZHAO M, et al. Catalytic degradation of tetracycline by ATP@ Fe3O4 composite material activated persulfate[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2463-2473.
    [87] RUIBIN Z, LUYING C, ZHUOXI P, et al. Removal effect and distribution characteristics of main pollutants in fluorine-containing water by aluminum sludge constructed wetland[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2874-2882.
    [88] ALLAHKARAMI E, MONFARED A D. Activated carbon adsorbents for the removal of emerging pollutants and its adsorption mechanisms[M]//Sustainable Technologies for Remediation of Emerging Pollutants from Aqueous Environment, Elsevier, 2024: 79-109.
    [89] 杨冠政. 环境伦理学概论[M]. 北京:清华大学出版社, 2013. YANG G Z. An Introduction to Environmental Ethics[M]. Beijing: Tsinghua University Press, 2013.
    [90] 顾萍. 从水环境治理走向水伦理治理:水环境治理的伦理探析[J]. 自然辩证法研究, 2023, 39(2): 41-46.

    GU P. From water environment improvement to water ethics improvement: ethical analysis of water environment control[J]. Studies in Dialectics of Nature, 2023, 39(2): 41-46.
    [91] 余谋昌, 雷毅, 杨通进. 环境伦理学[M]. 北京: 高等教育出版社, 2019. YU M C, LEI Y, YANG T J. Environmental Ethics[M]. Beijing: Higher Education Press, 2019.
    [92] 余谋昌. 生态伦理学: 从理论走向实践[M]. 北京: 首都师范大学出版社, 1999. YU M C. Ecology Ethics: From Theory to Practice[M]. Beijing: Capital Normal University Press, 1999.
    [93] 杨通进, 江娅, 郭辉. 环境伦理学基础[M]. 重庆:重庆出版社, 2007. YANG T J, JIANG Y, GUO H. Fundations of Environmental Ethics[M]. Chongqing: Chongqing Press, 2007.
    [94] ROCHESTER J R. Bisphenol A and human health: a review of the literature[J]. Reproductive Toxicology, 2013, 42: 132-55.
    [95] VOUTSA D H P S C, GIGER W. Benzotriazoles, alkylphenols, bisphenol A and musks in sewage sludge and their behavior in soils and plants[J]. Journal of Environmental Monitoring, 2006, 8(5): 509-516.
    [96] FORNER-PIQUER I, FAKRIADIS I, MYLONAS C C, et al. Effects of dietary bisphenol A on the reproductive function of gilthead sea bream (Sparus aurata) testes[J]. International Journal of Molecular Sciences, 2019, 20(20): 5003.
    [97] LI D K, ZHOU Z, MIAO M, et al. Urine bisphenol-A (BPA) level in relation to semen quality[J]. Fertility Sterility, 2011, 95(2): 625-630.
    [98] GRANT K, GOLDIZEN F C, SLY P D, et al. Health consequences of exposure to e-waste: a systematic review[J]. 2013, 1(6): 350-361.
  • 加载中
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-27
  • 录用日期:  2024-11-21
  • 修回日期:  2024-10-31
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2025-03-21

目录

    /

    返回文章
    返回