中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路施工废弃物环境属性及其再生产品性能影响浅析

王海舰

王海舰. 铁路施工废弃物环境属性及其再生产品性能影响浅析[J]. 环境工程, 2025, 43(1): 42-50. doi: 10.13205/j.hjgc.202501005
引用本文: 王海舰. 铁路施工废弃物环境属性及其再生产品性能影响浅析[J]. 环境工程, 2025, 43(1): 42-50. doi: 10.13205/j.hjgc.202501005
WANG Haijian. Analysis on influence of environmental properties of rail transit construction waste and performance of recycled products[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 42-50. doi: 10.13205/j.hjgc.202501005
Citation: WANG Haijian. Analysis on influence of environmental properties of rail transit construction waste and performance of recycled products[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 42-50. doi: 10.13205/j.hjgc.202501005

铁路施工废弃物环境属性及其再生产品性能影响浅析

doi: 10.13205/j.hjgc.202501005
详细信息
    作者简介:

    王海舰(1971-),男,高级工程师。253650278@qq.com

Analysis on influence of environmental properties of rail transit construction waste and performance of recycled products

  • 摘要: 面向我国铁路施工建设过程中所产生工程渣土、钻渣等废弃物对场地周边环境的污染风险,以钻渣、渣土和泥饼为研究目标,分析不同废弃物重金属元素构成、矿物成分等资源环境属性。以再生陶粒作为施工废弃物资源化目标产物,探究不同废弃物配比下,再生陶粒表观密度、堆积密度和浸出行为的变化规律,解析不同再生产品的微观形态。结果表明:1)不同施工废弃物中重金属元素含量以及矿物成分等资源环境属性具有明显差异;2)受不同施工废弃物掺和量影响,再生陶粒表观密度、堆积密度具有一定区别;3)相较于原材料,再生陶粒中重金属元素浓度存在有一定的上升,因此需考虑再生陶粒对于生态环境的污染性。
  • [1] 吴济琳. 浅谈北京城市地下空间发展趋势[J]. 智能建筑与智慧城市,2023(1):21-24. WU J L. Discussion on the development trend of urban underground space in Beijing [J]. Intelligent Building and Smart City,2023

    (1):21-24.
    [2] 董明星. 谈中国城市地铁建设的现状和发展战略[J]. 城市建设理论研究(电子版),2015(35):786-786. DONG M X. On the status quo and development strategy of urban subway construction in China [J]. Urban Construction Theory Research (Electronic Edition),2015(35):786-786.
    [3] 欧阳峣,易思维. 近代铁路、新式教育与经济发展——中国近代铁路影响经济发展的实证研究[J]. 湘潭大学学报(哲学社会科学版),2020,44(5):58-67. OUYANG YAO, YI S W. Modern railways, new education and economic development: an empirical Study on the influence of Modern Railways on economic development in China [J]. Journal of Xiangtan University (Philosophy and Social Sciences Edition), 2019,44(5):58-67.
    [4] 新华社.我国高铁达到4.5万公里[EB/OL].(2024-01-29

    )[2024-01-29]. The official Xinhua News Agency. China Has Reached 45000 km High-Speed Rail [EB/OL]. [2024-01-29] (2024-01-29).
    [5] 张小连,谢色新,张晓平. 盾构工程泥浆处置及资源化利用[J]. 中国煤炭地质,2023,35(5):71-74

    ,80. DOI:10.3969/j.issn.1674-1803.2023.05.11. ZHANG X L, XIE S X, ZHANG X P. Mud disposal and resource utilization of shield construction [J]. Coal Geology of China,2023,35(5):71-74,80.
    [6] 余松霖. 建筑渣土工程特性与矿坑填埋场沉降[D]. 杭州:浙江大学,2019. YU SONGLIN. Engineering Characteristics of Construction Residue and Settlement of Mine Landfill [D]. Hangzhou: Zhejiang University,2019.
    [7] 焦居仁. 红坳渣土受纳场特别重大滑坡事故给人们的警示[J]. 中国水土保持,2017(2):1-3. JIAO J R. The warning given to people by a particularly serious landslide accident in Hongao residuum receiving field [J]. Soil and Water Conservation in China,2017

    (2):1-3.
    [8] 宋勤奋,朱子杰,王佳鑫,等. 城市工程渣土资源化利用现状[J]. 中国资源综合利用,2021,39(8):90-92.

    SONG Q F, ZHU Z J, WANG J X, et al. Current situation of resource utilization of urban engineering residue [J]. China Comprehensive Utilization of Resources, 2019,39(8):90-92.
    [9] 钟翼进,王毓晋,宋冰泉,等. 建筑渣土泥浆制备复合免烧轻质骨料及性能试验研究[J]. 新型建筑材料,2022,49(5):37-41.

    ZHONG Y J, WANG Y J, SONG B Q, et al. Experimental study on preparation of composite light-weight aggregate without burning from construction residue mud and its properties [J]. New Building Materials,2022,49(5):37-41.
    [10] 许宁,陈铭,蔺威威,等. 泥岩地层盾构渣土免烧砖制备技术研究[J]. 新型建筑材料,2023,50(6):80-82

    ,94. XU N, CHEN M, LIN W W, et al. Study on preparation technology of shield cinder free brick in mudstone formation [J]. New Building Materials,2023,50(6):80-82,94.
    [11] 刘原,唐福尧,张伟,等. 利用余泥渣土制备高强免烧砖的试验研究[J]. 广东土木与建筑,2023,30(1):109-111.

    LIU Y, TANG F Y, ZHANG W, et al. Experimental study on preparation of high-strength no-firing brick from residual mud residue [J]. Guangdong Civil and Architecture,2023,30(1):109-111.
    [12] 郭爱锋,魏小凡,王瑶,等. 渣土免烧砖的制备及性能研究[J]. 非金属矿,2021,44(3):99-102.

    GUO A F, WEI X F, WANG Y, et al. Study on preparation and properties of residue-free brick [J]. Non-metallic Ore,2021,44(3):99-102.
    [13] 黄红峰. 钻孔灌注桩废弃泥浆及钻渣制备边坡砌块施工技术应用[J]. 企业科技与发展,2023(7):72-75. HUANG H F. Application of slope block construction technology prepared from waste mud and drilling slag of bored pile [J]. Enterprise Technology and Development,2023

    (7):72-75.
    [14] 王伟志,严赪强,徐永福,等. 高速铁路水泥改良钻渣路用性能研究[J]. 铁道勘察,2023,49(1):96-101.

    WANG W Z, YAN R Q, XU YONGFU, et al. Research on road performance of drilling slag improved by cement for high-speed railway [J]. Railway Survey,2023,49(1):96-101.
    [15] HO L S, NAKARAI K, DUC M,et al.Analysis of strength development in cement-treated soils under different curing conditions through microstructural and chemical investigations[J].Construction and Building Materials, 2018, 166:634-646.
    [16] Solidification of Nansha soft clay using cement-based composite curing agents[J]. Advances in Cement Research,2020,32(2):66-77.
    [17] 白江伟,闫广新,刘清俊,等. 手持检测仪(XRF)对土壤八大重金属元素检出方法的适宜性[J]. 城市地质,2023,18(1):83-89.

    BAI J W, YAN G X, LIU Q J, et al. Suitability of handheld detector (XRF) for detection of eight heavy metals in soil [J]. Urban Geology, 2019,18(1):83-89.
    [18] 李海涛,张杰. 土壤重金属污染区XRF和实验室数据对比分析[J]. 广东化工,2021,48(14):131-132

    ,144. LI H T, ZHANG J. Comparative analysis of XRF and laboratory data in soil heavy metal contaminated areas [J]. Guangdong Chemical Industry, 201,48(14):131-132,144.
    [19] ASSI A,BILO F,ZANOLETTI A, et al. Zero-waste approach in municipal solid waste incineration: reuse of bottom ash to stabilize fly ash[J]. Journal of Cleaner Production 2025,245. DOI: 10.1016/j.jclepro.2019.118779.
    [20] VERMA C, MADAN S, HUSSAIN A,et al.Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India[J].Cogent Engineering, 2016, 3(1):1179243.
    [21] JAMES O’CONNOR A B, THI BANG TUYEN NGUYEN B, TOM HONEYANDS, et al. Production, characterisation, utilisation, and beneficial soil application of steel slag: a review[J]. Journal of Hazardous Materials, 2021, 419:126478.
    [22] 中华人民共和国国家质量监督检验检疫总局. 轻集料及其试验方法 第2部分:轻集料试验方法:GB/T 17431.2—2010

    [S]. 2010. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Lightweight Aggregate and Its Test Methods-Part 2: Test Methods for Lightweight Aggregate: GB/T 17431.2—2010 [S]. 2010.
    [23] 土壤环境质量 农用地土壤污染风险管控标准(试行):GB 15618—2018[S]. 2018. Soil Environmental Quality-Soil Pollution Risk Control Standards for Agricultural Land (Trial): GB 15618—2018 [S]. 2018.
    [24] 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600—2018[S]. 2018. Soil Environmental Quality-Soil Pollution Risk Control Standards for Construction Land (Trial): GB 36600—2018[S]. 2018.
    [25] 周麒雯. 粘土矿物组成的差热分析[J]. 水电工程研究,1993(2):64-66. ZHOU Q W. Differential thermal analysis of clay mineral composition [J]. Hydropower Engineering Research,1993

    (2):64-66.
    [26] 何凌云,文九巴,张玉清. 有机改性粘土的制备与X-射线衍射和热失重分析[J]. 洛阳工学院学报(自然科学版),2002,23(3):102-104. HE L Y, WEN J B, ZHANG Y Q. Preparation of organic modified clay by X-ray diffraction and thermogravimetric analysis [J]. Journal of Luoyang Institute of Technology (Natural Science Edition),2002,23(3):102-104.
    [27] 苗立锋,包镇红,宋福生,等. 几种高岭土的组成与可塑性研究[J]. 硅酸盐通报,2014,33(2):333-336.

    MIAO L F, BAO Z H, SONG F S, et al. Composition and plasticity of several kaolin soils [J]. Bulletin of Silicate,2014,33(2):333-336.
    [28] 邹献中,陈勇,谢卓文,等. 离子强度对可变电荷表面吸附性铜离子解吸的影响:高岭石[J]. 土壤学报,2018,55(3):664-672.

    ZOU X Z, CHEN Y, XIE Z W, et al. Effect of ionic strength on the desorption of variable charge surface adsorbent copper ions: kaolinite [J]. Acta Pedologica Sinica,2018,55(3):664-672.
    [29] 陈洁渝,王焰新,刘德民. 高岭石基矿物聚合物的制备及耐酸碱性[J]. 岩石矿物学杂志,2011,30(4):727-733.

    CHEN JY, WANG Y X, LIU D M. Preparation and acid-alkali resistance of kaolinite based mineral polymers [J]. Journal of Petromineralogy,2011,30(4):727-733.
    [30] 刘柳,胡佩伟,高润琴,等. 纳米零价铁强化高岭石去除水中Cr(Ⅵ)及机制研究[J]. 硅酸盐通报,2021,40(5):1529-1535

    ,1544. LIU L, HU P W, GAO R Q, et al. Study on the removal of Cr(Ⅵ) from water by nano-ferric zero-valent kaolinite [J]. Bulletin of Silicate, 201,40(5):1529-1535,1544.
    [31] 张惠芬,冯璜,王辅亚,等. 粘土矿物钝化改性及岩土的力学性质[J]. 矿物学报, 2001,21(3):315-318.

    ZHANG H F, FENG H, WANG F Y, et al. Passivation modification of clay minerals and mechanical properties of soil and soil [J]. Acta Mineralica Sinica, 2001,21(3):315-318.
    [32] 吴平霄,叶代启,明彩兵. 柱撑粘土矿物层间域的性质及其环境意义[J]. 矿物岩石地球化学通报,2002,21(4):228-233.

    WU P X, YE D Q, MING C B. Properties of interlayer domains of pillared clay minerals and their environmental significance [J]. Bulletin of Mineralogy, Petrology and Geochemistry,2002,21(4):228-233.
    [33] 沈益航,陈萍,楼洪海,等. 工程泥浆脱水泥饼制备烧结陶粒及其性能研究[J]. 硅酸盐通报,2023,42(6):2062-2070.

    SHEN Y H, CHEN P, LOU H H, et al. Study on the preparation and properties of sintered ceramics by decementing cake in engineering mud [J]. Bulletin of Ceramics,2023,42(6):2062-2070.
    [34] 黄建立,金宜英,舒郅斐,等. 利用飞灰烧结陶粒制备实心发泡自保温砌块[J]. 环境工程,2023,41(6):151-156.

    HUANG J J, JIN Y Y, SHU Z F, et al. Preparation of solid foam self-insulating block by sintering ceramic particles with fly ash [J]. Environmental Engineering,2023,41(6):151-156.
    [35] 柯威,熊伟,刘景雪,等. 城市固体废弃物热重分析及热解动力学研究[J]. 可再生能源,2006(5):53-56. DOI: 10.

    3969/j.issn.1671-5292.2006.05.017. KE W, XIONG W, LIU J X, et al. Thermogravimetric analysis and pyrolysis kinetics of municipal solid waste [J]. Renewable Energy,2006(5):53-56.
    [36] 刘正杰. 重金属离子在粘土矿物上的吸附行为研究[D]. 淄博:山东理工大学,2013. DOI: 10.7666/d.D332323.

    LIU Z J. Study on Adsorption Behavior of Heavy Metal Ions on Clay Minerals [D]. Zhibo: Shandong University of Technology,2013.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 录用日期:  2024-05-26
  • 修回日期:  2024-03-10
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2025-03-21

目录

    /

    返回文章
    返回