[1] |
周城. 小城镇排水系统现状与问题研究[J]. 市政技术 2024,42(6): 202-207,36. ZHOU C. Research on the current status and problems of drainage system in small towns[J]. Municipal Engineering Technology, 2024,42(6): 202-207,36.
|
[2] |
BARCO J, PAPIRI S, STENSTROM M K J C. First flush in a combined sewer system[J]. Chemosphere, 2008, 71(5): 827-833.
|
[3] |
BROMBACH H, WEISS G, FUCHS S J W S, et al. A new database on urban runoff pollution: comparison of separate and combined sewer systems[J]. Water Science and Technology,2005, 51(2): 119-128.
|
[4] |
De TOFFOL S, ENGELHARD C, RAUCH W J W S, et al. Combined sewer system versus separate system-a comparison of ecological and economic performance indicators[J]. Water Science and Technology, 2007, 55(4): 255-264.
|
[5] |
MA Y K, HAO S N, ZHAO H T, et al. Pollutant transport analysis and source apportionment of the entire non-point source pollution process in separate sewer systems[J]. Chemosphere, 2018, 211:557-565.
|
[6] |
薛重华,赵沂萌,孙家荣, 等. 水环境因子对管道沉积物中氮磷释放的影响[J]. 环境工程, 2023, 41(12): 89-98.XUE C H, ZHAO Y M, SUN J R, et al. Effects of water environmental factors on nitrogen and phosphorus release from pipeline sediments[J]. Environmental Engineering, 2023, 41(12): 89-98.
|
[7] |
陈子香. 处于重力流管道拐点处污水井能否溢出的一种计算方法[J]. 山东化工, 2016, 45(16): 163-165.CHEN Z X. A calculating method for whether it will overflow to sewage well in the inflection point of the gravity flowed pipe[J]. Shandong Chemical Industry, 2016, 45(16): 163-165.
|
[8] |
刘伟, 石烜, 徐栋伟, 等. 流速对污水管道中甲烷与硫化物生成的影响[J]. 中国环境科学, 2023, 43(6): 2938-2947.LIU W, SHI H, XU D W, et al. Effect of flow velocity on methane and sulfide formation in sewage pipes[J]. China Environmental Science, 2023, 43(6): 2938-2947.
|
[9] |
SHRESTHA S, SHARMA K, CHEN Z, et al. Unravelling the influences of sewer-dosed iron salts on activated sludge properties with implications on settleability, dewaterability, and sludge rheology[J]. Water Research, 2019, 167: 115089.
|
[10] |
陈屹林, 辛文才, 陈蒙, 等. 污泥管道输送研究进展[J]. 环境工程, 2022, 40(7): 248-252.CHEN Q L, XIN W C, CHEN M, et al. Research progress of sludge transportation through pipeline[J]. Environmental Engineering, 2022, 40(7): 248-252.
|
[11] |
徐建祥, 池永洲, 陈道雄, 等. 通沟污泥湿式分级处理技术及装备的应用[J]. 中国给水排水, 2019, 35(4): 84-88.XU J X, CHI Y Z, CHEN D X, et al. Application of wet gradation technology and equipment for sewer sludge treatment station[J]. China Water & Wastewater, 2019, 35(4): 84-88.
|
[12] |
杨新海, 卢成洪, 付钟, 等. 上海市长宁区通沟污泥处理工程方案研究[J]. 环境卫生工程, 2009, 17(6): 41-43.YANG X H, LU C H, FU Z, et al. Sewer sludge treatment project in Changning District of Shanghai[J]. Environmental Hygiene Engineering, 2009, 17(6): 41-43.
|
[13] |
吴俊. 排水管道中雨污水颗粒物沉降速率特征分析[J]. 环境工程, 2023, 41(4): 1-9.WU J. Analysis of settling velocity of particulates in flows in dry and wet weather from the combined sewer[J]. Environmental Engineering, 2023, 41(4): 1-9.
|
[14] |
邹锦林, 石广甫, 曹伟华, 等. 通沟污泥淘洗预处理及工艺参数优化研究[J]. 环境卫生工程, 2011, 19(2): 42-44.ZOU J L, SHI G F, CAO W H, et al. Elutriation pre-treatment technology of dredging sludge and optimization of its process parameters[J]. Environmental Sanitation Engineering, 2011, 19(2): 42-44.
|
[15] |
陈国荣, 赵青霞, 彭云涌, 等. 冲刷活动对排水管网沉积物中污染物迁移规律的影响[J]. 环境工程, 2023, 41(增刊2): 886-894,897.CHEN G R, ZHAO Q X, PENG Y Y, et al. Impact of scouring activities on pollutant migration in sediments of drainage pipeline network[J]. Environmental Engineering, 2023, 41: 886-894,897.
|
[16] |
肖晨曦, 王红武, 戴晓虎. 城市面源污染特点与控制技术研究进展[J]. 环境工程, 2023, 41(12): 21-31.XIAO C X, WANG H W, DAI X H. A review of characteristics and control technologies of urban non-point source pollution[J]. Environmental Engineering, 2023, 41(12): 21-31.
|
[17] |
张强, 张杰, 庄敏捷, 等. 上海市通沟污泥污染物指标检测和分析[J]. 给水排水, 2018, 44(8): 42-47.ZHANG Q, ZHANG J, ZHUANG M J, et al. Pollutant indicators detection and data analysis of sewage sludge in Shanghai City[J]. Water Supply and Drainage, 2018, 44(8): 42-47.
|
[18] |
KARIMOVICH N M, BAKHTIYAROVICH A D J Н Ф. Experience of soil fertilization with sewer sludge waste water in Namangan region[J]. Научный Фокус, 2023, 1(1): 396-406.
|
[19] |
徐莉. 通沟污泥取代率及状态对混凝土性能的影响[J]. 先进建筑材料, 2024, 51 (1): 45-48.XU L. Influence of replacement rate and state of sewer sludge on concrete performance[J]. New Building Materials, 2024, 51 (1): 45-48.
|
[20] |
LINARES R V, LI Z, ABU-GHDAIB M, et al. Water harvesting from municipal wastewater via osmotic gradient: an evaluation of process performance[J]. Journal of Membrane Science, 2013,447: 50-56.
|
[21] |
张瀚之, 鹿化煜, 周亚利, 等. 渭河流域沉积矿物组合定量分析及示踪[J]. 中国给水排水, 2022, 40(4): 944-956.ZHANG H Z, LU H Y, ZHOU Y L, et al. Quantitative Analysis of the Clastic Mineral Composition in Sediments from the Weihe River Basin by Scanning Electron Microscope and Its Implication for Provenance[J]. China Water & Wastewater, 2022, 40(4): 944-956.
|
[22] |
王金行, 陆虎,杨松付. 旋流器与高频细筛组合作业在白象山选矿厂的应用[J]. 现代矿业, 2017, 33(11): 13-15.WANG J X, LU H, YANG S F. Application of cyclones combined with high-frequency fine screens in Baixiangshan Concentrator[J]. Modern Mining, 2017, 33(11): 13-15.
|
[23] |
许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.XU M M, WEI X C, YANG R, et al. Research progress of provenance tracing method for heavy minera analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171.
|
[24] |
尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379-387.YIN P, HE Q, HE H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Testing, 2018, 37(4): 379-387.
|
[25] |
何品晶, 顾国维, 李笃中. 城市污泥处理与利用[M]. 北京:科学出版社, 2003. HE P J, GU G W, LI D Z. Urban Sewage Sludge Treatment and Utilization[M]. Beijing: Science Press, 2003.
|
[26] |
REN D H, ZUO Z Q, XING Y X, et al. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments[J]. Water Research, 2022,211: 118010.
|
[27] |
宋云龙, 赵延鹏, 王亮, 等. 管道在线超声去污技术在某核电站的初步应用研究[J]. 辐射防护通讯, 2023, 42(6): 27-31.SONG Y L, ZHAO Y P, WANG L, et al. Preliminary application of on-line ultrasonic decontamination of pipelines at a NPP[J]. Radiation Protection Communications, 2023, 42(6): 27-31.
|
[28] |
MENG D Z, JIN W, CHEN K L, et al. Cohesive strength changes of sewer sediments during and after ultrasonic treatment: the significance of bound extracellular polymeric substance and microbial community[J]. Science of the Total Environment,2020, 723: 138029.
|
[29] |
王旭, 于赤灵, 彭平安, 等. 沉积物中黑碳的提取和测定方法: 误差分析和回收率实验[ J]. 地球化学, 2001, 30(5):439-444.WANG X, YU C L, PENG P A, et al. Extraction and determination methods of black carbon in sediment: error analysis and recovery experiment[J]. Geochimica, 2001, 30(5):439-444.
|
[30] |
韩剑霜, 石烜, 张建锋, 等. 污水管道沉积物分层冲刷的起动规律及其污染贡献特性[J]. 中国环境科学, 2023, 43(10):5208-5213.HAN J S, SHI H, ZHANG J F, et al. Starting law and pollution contribution characteristics of stratified sediment scouring in sewage pipes[J]. China Environmental Science, 2023, 43(10):5208-5213.
|
[31] |
ZHANG Z G, LU J S, ZHANG Z Q, et al. Effect of potassium ferrate treatment on adhesive gelatinous biopolymer structure and erosion resistance of sewer sediments: promotion or inhibition?[J]. Chemical Engineering Journal, 2022, 431: 134025.
|
[32] |
PANG H L, LI X W, YUAN H W, et al. Sewer sediment adhesion reduction and hydraulic floating promotion by alkaline treatment[J]. Science of the Total Environment, 2023, 893: 164896.
|
[33] |
PANG H L, LI X W, QIN Q W, et al. In-situ sewer sediment self-cleaning by plant ash-driven hydrolysis: impairing adhesion and hydraulic erosion resistance from gelatinous biopolymer molecule deconstruction[J]. Science of the Total Environment, 2024, 908:168276.
|
[34] |
TANG Z Z, XU H L, ZHU R L, et al. Enhancement of sewer sediment control and disruption of adhesive gelatinous sediment structure using low-dose calcium peroxide[J]. Environmental Research, 2024, 243: 117852.
|
[35] |
RATHNAYAKE D, KRISHNA K B, KASTL G, et al. The role of pH on sewer corrosion processes and control methods: a review[J]. Science of the Total Environment, 2021, 782: 146616.
|
[36] |
CEN X J, DUAN H R, HU Z T, et al. Multifaceted benefits of magnesium hydroxide dosing in sewer systems: impacts on downstream wastewater treatment processes[J]. Water Research, 2023, 247: 120788.
|
[37] |
BU H, CARVALHO G, YUAN Z G, et al. Biotrickling filter for the removal of volatile sulfur compounds from sewers: a review[J]. Chemosphere, 2021, 277: 130333.
|
[38] |
李一兵, 白珺, 张彦平, 等. SDS 促进复配酶水解排水管网沉积物[J]. 环境工程学报, 2024, 18(2): 450-460.LI Y B, BAI J, ZHANG Y P, et al. SDS promotes the hydrolysis of sewer network sediment by composite enzymes[J]. Journal of Environmental Engineering, 2024, 18(2): 450-460.
|
[39] |
HIGGINS M J, SOBECK D C, OWENS S J, et al. Case study Ⅱ:application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance—Using alternatives to sodium-based chemicals[J]. Water Environment Research, 2004, 76(4): 353-359.
|
[40] |
DABROWSKI A, HUBICKI Z, PODKO S'CIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91-106.
|
[41] |
SLAVEK J, WALLER P, PICKERING W F J T. Labile metal content of sediments—fractionation scheme based on ion-exchange resins[J]. Talanta, 1990, 37(4): 397-406.
|
[42] |
ZAHARIA M M, BUCATARIU F, VASILIU A L, et al. Stable and reusable acrylic ion-exchangers: from HMIs highly polluted tailing pond to safe and clean water[J]. Chemosphere, 2022,304: 135383.
|
[43] |
庞鹤亮, 白玛, 索珍, 等 海水淡化 RO 浓盐废水强化污泥絮体结构及脱水性能研究[J]. 给水排水, 2020, 56(4): 106-113.PANG H L, BAI M, SUO Z, et al. Enhancement of floc structure and dewaterability of waste activated sludge by reverse osmosis brine conditioning[J]. Water Supply and Drainage 2020, 56(4): 106-113.
|