中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空气质量监测微站网络研究浙江某化工园区大气污染物时空变化特征

孙孜涵 王耕 张溪 孙松华 庞小兵

孙孜涵,王耕,张溪,等.基于空气质量监测微站网络研究浙江某化工园区大气污染物时空变化特征[J].环境工程,2025,43(4):17-25. doi: 10.13205/j.hjgc.202504002
引用本文: 孙孜涵,王耕,张溪,等.基于空气质量监测微站网络研究浙江某化工园区大气污染物时空变化特征[J].环境工程,2025,43(4):17-25. doi: 10.13205/j.hjgc.202504002
SUN Z H,WANG G,ZHANG X,et al.Research on the spatiotemporal variation characteristics of air pollutants in a chemical industrial park in Zhejiang based on air quality monitoring micro station network[J].Environmental Engineering,2025,43(4):17-25. doi: 10.13205/j.hjgc.202504002
Citation: SUN Z H,WANG G,ZHANG X,et al.Research on the spatiotemporal variation characteristics of air pollutants in a chemical industrial park in Zhejiang based on air quality monitoring micro station network[J].Environmental Engineering,2025,43(4):17-25. doi: 10.13205/j.hjgc.202504002

基于空气质量监测微站网络研究浙江某化工园区大气污染物时空变化特征

doi: 10.13205/j.hjgc.202504002
基金项目: 

浙江省“领雁”研发攻关计划(2022C03073);国家重点研发计划(2022YFC3703500);浙江省重点研发计划(2021C03165);绍兴市科技计划项目(2022B41006);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0820)

详细信息
    作者简介:

    孙孜涵(2001-),男,硕士研究生,主要研究方向为大气环境监测。sunlucky1621@163.com

    通讯作者:

    庞小兵(1978 - ),男,教授,主要研究方向为大气环境监测和环境仪器研制研究。pangxb@zjut.edu.cn

Research on the spatiotemporal variation characteristics of air pollutants in a chemical industrial park in Zhejiang based on air quality monitoring micro station network

  • 摘要: 基于30个微型空气质量监测站组建的大气污染物监测网络,对浙江某精细化工园区中的大气污染物开展长期监测研究。结果显示:1)O3浓度呈双峰变化,峰值出现在4月(83.8 μg/m3)和9月(84.5 μg/m3);NO2浓度在冬季高于夏季,年均浓度主要集中在4~28 μg/m3之间;TVOCs变化呈单峰趋势,在8月到达峰值,平均浓度为1954 μg/m3;由于较好的气象扩散条件,PM10和PM2.5的浓度变化趋势较为一致,二者均在12月浓度最高。2)O3浓度的高值区域主要集中在园区北部;NO2的时空分布特征与O3呈显著负相关,O3浓度高的地区NO2的浓度较低;TVOCs的空间分布态势在全年并无显著差异,主要集中在园区南部和东北部;PM高值区域主要分布在园区中部。3)受疫情影响,NO2和PM的浓度在管控期间低于管控之前,而O3浓度则因其前体物的影响使得管控期间的浓度高于管控之前。4)根据皮尔逊相关系数,风速的长期迁移和高温会促进O3的形成;由空间分布和NO2与TVOCs的比率可知,精细化工园区中O3 的形成受NO2限制,降低环境NO2浓度是减少园区中O3浓度的有效策略。
  • 1  浙江某化工园区地理位置和30个微站在园区的布局

    注: 1—30为监测点。

    1.  The geographical location of a chemical industrial park in Zhejiang and the distribution of 30 micro stations in the park

    2  监测期间大气污染物浓度月变化及浓度频率分布

    2.  Monthly variations and concentration frequency distribution of air pollutants during the monitoring period

    3  监测期间大气污染物浓度的日变化

    3.  Diurnal variations of atmospheric pollutant concentrations during the monitoring period

    4  2019年12月至2020年11月O3、NO2、TVOCs和PM10的空间分布

    4.  The spatial distribution of O3, NO2, TVOCs, and PM10 from December 2019 to November 2020

    5  化工园区在封控前、中、后期各污染物的浓度变化

    5.  The concentration changes of each pollutant in the chemical industrial park before, during, and after control

    6  化工园区在封控前后各物质浓度空间变化

    6.  The spatial variations of the concentrations of various substances in the chemical industrial park before and after control

    1  气体传感器技术参数

    1.   Technical parameters of the gas sensors

    监测目标原理检出限偏差/%响应时间/s
    PM光散射0~1500 μg/m3
    NO2电化学0~500 μg/m310≤120
    O3电化学0~500 μg/m310≤120
    TVOCs光离子化0~10 mg/m310≤120
    下载: 导出CSV

    2  空气污染物浓度与风速、温度、相对湿度之间的皮尔逊相关系数

    2.   Pearson correlation coefficients between air pollutants concentrations and wind speed, temperature, and humidity

    项目PM2.5PM10NO2O3TVOCs
    风速冬季-0.22-0.10-0.210.35-0.22
    春季-0.05a-0.02-0.16b0.22b-0.00
    夏季-0.23b-0.21b-0.27b0.34b-0.23b
    秋季-0.25b-0.27b-0.030.05a-0.43b
    温度冬季-0.58b-0.43a-0.020.210.16
    春季0.040.07b-0.27b0.54b0.35b
    夏季-0.07b-0.04a0.46b0.41b0.07b
    秋季0.05a-0.12b-0.40b0.70b0.65b
    RH冬季0.61b0.53b0.38-0.49a0.25
    春季0.040.000.08b-0.62b0.46b
    夏季0.16b0.11b0.54b-0.44b0.10b
    秋季0.13b0.05a0.24b-0.660.10b
    注:a表示相关性在0.05水平上显著;b表示相关性在0.01水平上显著。
    下载: 导出CSV
  • [1] PASCAL M,PASCAL L,BIDONDO M L,et al. A review of the epidemiological methods used to investigate the health impacts of air pollution around major industrial areas[J]. Journal of environmental and public health,2013,2013(5):1-17.
    [2] WU F,ZHU G,YU Y,et al. Safety risks and countermeasures of chemical industry park in Jiangsu Province[J]. IOP Conference Series:Earth and Environmental Science,2021,680(1):121-124.
    [3] CHEN C H,CHUANG Y C,HSIEH C C,et al. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan[J]. Atmospheric Pollution Research,2019,10(4):1060-1074.
    [4] ZHENG H,KONG S,YAN Y,et al. Compositions,sources and health risks of ambient volatile organic compounds(VOCs)at a petrochemical industrial park along the Yangtze River[J]. Science of the Total Environment,2020,703(C):135505.
    [5] JIA H,GAO S,DUAN Y,et al. Investigation of health risk assessment and odor pollution of volatile organic compounds from industrial activities in the Yangtze River Delta region,China[J]. Ecotoxicology and Environmental Safety,2021,208:111474.
    [6] WANG X,LEI Y,YAN L,et al. A unit-based emission inventory of SO2,NO x and PM for the Chinese iron and steel industry from 2010 to 2015[J]. Science of the Total Environment,2019,676(8):18-30.
    [7] BAEK K M,KIM M J,KIM J Y,et al. Characterization and health impact assessment of hazardous air pollutants in residential areas near a large iron-steel industrial complex in Korea[J]. Atmospheric Pollution Research,2020,11(10):1754-1766.
    [8] ZHANG X,GAO S,FU Q,et al. Impact of VOCs emission from iron and steel industry on regional O3 and PM2.5 pollutions[J]. Environmental Science and Pollution Research,2020,27(23):28853-28866.
    [9] ZHANG T,XIAO S,WANG X,et al. Volatile organic compounds monitored online at three photochemical assessment monitoring stations in the Pearl River Delta(PRD)region during summer 2016:sources and emission areas[J]. Atmosphere,2021,12(3):327-343.
    [10] SCHNEIDER P,CASTELL N,VOGT M,et al. Mapping urban air quality in near real-time using observations from low-cost sensors and model information[J]. Environment International,2017,106(5):234-247.
    [11] PANG X,CHEN L,SHI K,et al. A lightweight low-cost and multipollutant sensor package for aerial observations of air pollutants in atmospheric boundary layer[J]. Science of the Total Environment,2021,764(37):142828.
    [12] SPINELLE L,GERBOLES M,VILLANI M G,et al. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A:ozone and nitrogen dioxide[J]. Sensors and Actuators B-Chemical,2015,215(3):249-257.
    [13] CHEN L,PANG X B. Photo-ionization sensors as detectors in GCxGC systems for ambient VOCs measurements[J]. Ecology and Environmental Monitoring of Three Gorges,2020,5(3):62-70. 陈浪,庞小兵. 光离子化传感器在全二维气相色谱仪检测环境VOCs中的应用[J]. 三峡生态环境监测,2020,5(3):62-70.
    [14] PIEDRAHITA R,XIANG Y,MASSON N,et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring[J]. Atmospheric Measurement Techniques,2014,7(10):3325-3336.
    [15] HOQUE R R,KHILLARE P S,AGARWAL T,et al. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi,India[J]. Science of the Total Environment,2008,392(1):30-40.
    [16] HAN C,LIU R,LUO H,et al. Pollution profiles of volatile organic compounds from different urban functional areas in Guangzhou China based on GC/MS and PTR-TOF-MS:Atmospheric environmental implications[J]. Atmospheric Environment,2019,214(41):116843-116843.
    [17] HUANG H,WANG Z,GUO J,et al. Composition,seasonal variation and sources attribution of volatile organic compounds in urban air in southwestern China[J]. Urban Climate,2022:101241.
    [18] LI B,HO S S H,LI X,et al. Pioneering observation of atmospheric volatile organic compounds in Hangzhou in eastern China and implications for upcoming 2022 Asian Games[J]. Journal of Environmental Sciences,2023,124:723-734.
    [19] ZHAO S L,HOU Q Z,WU X L,et al. Spatial and Temporal Distribution of PM2.5 from 2015 to 2019 in Heilongjiang Province[J]. Environmental Science and Management,2024,49(1):45-50. 赵善良,侯庆泽,吴晓龙,等. 黑龙江省2015年-2019年大气PM2.5时空分布特征研究[J]. 环境科学与管理,2024,49(1):45-50.
    [20] FERNANDEZ-FERNANDEZ M I,GALLEGO M C,GARCIA J A,et al. A study of surface ozone variability over the Iberian Peninsula during the last fifty years[J]. Atmospheric Environment,2011,45(11):1946-1959.
    [21] YU S,YIN S,ZHANG R,et al. Spatiotemporal characterization and regional contributions of O3 and NO2:An investigation of two years of monitoring data in Henan,China[J]. Journal of Environmental Sciences,2020,90:29-40.
    [22] ZHANG H,WANG Y,HU J,et al. Relationships between meteorological parameters and criteria air pollutants in three megacities in China[J]. Environmental Research,2015,140:242-254.
    [23] SONG Y,ZHANG Y,LIU J,et al. Rural vehicle emission as an important driver for the variations of summertime tropospheric ozone in the Beijing-Tianjin-Hebei region during 2014-2019[J]. Journal of Environmental Sciences,2022,114:126-135.
    [24] MOHAMAD NAZIR A U,AWANG N R,RAMLI N A,et al. Effect of monsoonal period toward night-time ground level ozone in East Coast Malaysia[J]. Earth and Environmental Science 2020,549(1):012003.
    [25] WANG Z,LI Y,CHEN T,et al. Ground-level ozone in urban Beijing over a 1-year period:temporal variations and relationship to atmospheric oxidation[J]. Atmospheric Research,2015,164:110-117.
    [26] HAN D,WANG Z,CHENG J,et al. Volatile organic compounds(VOCs)during non-haze and haze days in Shanghai:characterization and secondary organic aerosol(SOA)formation[J]. Environmental Science and Pollution Research,2017,24(22):18619-18629.
    [27] SANDEEP A,RAO T N,RAMKIRAN C N,et al. Differences in atmospheric boundary-layer characteristics between wet and dry episodes of the Indian Summer Monsoon[J]. Boundary-Layer Meteorology,2014,153(2):217-236.
    [28] TIAN J,FANG C,QIU J,et al. Analysis of pollution characteristics and influencing factors of main pollutants in the Atmosphere of Shenyang City[J]. Atmosphere,2020,11(7):766. DOI: 10.3390/atmos11070766.
    [29] ZOU Y,DENG X J,ZHU D,et al. Characteristics of 1 year of observational data of VOCs,NO x and O3 at a suburban site in Guangzhou,China[J]. Atmospheric Chemistry and Physics,2015,15(12):6625-6636.
    [30] LIU B,LIANG D,YANG J,et al. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin,China[J]. Environmental Pollution,2016,218:757-769.
    [31] ZHANG J,WANG C,QU K,et al. Characteristics of ozone pollution,regional distribution and causes during 2014-2018 in Shandong Province,East China[J]. Atmosphere,2019,10(9).
    [32] CHEUNG V T F,WANG T. Observational study of ozone pollution at a rural site in the Yangtze Delta of China[J]. Atmospheric Environment,2001,35(29):4947-4958.
    [33] MOZAFFAR A,ZHANG Y L,FAN M,et al. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing,China[J]. Atmospheric Research,2020,240(12):104923-104923.
    [34] DU G J,QIANG N,ZENG P,et al. The interpretation of Emission Standard of Air Pollutants for Pharmaceutical Industry(GB 37823—2019)[J]. Environmental Monitoring and Forewarning,2020,12(1):1-8. 都基峻,羌宁,曾萍,等.《制药工业大气污染物排放标准》(GB 37823—2019)解读[J]. 环境监控与预警,2020,12(1):1-8.
    [35] XIMINIS J,MASSAGUER A,PUJOL T,et al. Nox emissions reduction analysis in a diesel Euro VI Heavy Duty vehicle using a thermoelectric generator and an exhaust heater[J]. Fuel,2021,301:501-522.
    [36] ZENG P,XIN C L,YU S,et al. Spatial and temporal distribution of atmospheric pollutants and meteorological factors in the core district of LiuzhouCity,a typical industrial city in Southwest China[J]. Acta Scientiae Circumstantiae,2020,40(1):13-26 曾鹏,辛存林,于奭. 典型西南工业城市柳州市核心区大气污染物时空分布与气象因素研究[J]. 环境科学学报,2020,40(1):13-26.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 录用日期:  2024-04-30
  • 修回日期:  2023-10-23
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回