中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GEE云平台和Sentinel-5P卫星数据的苏皖鲁豫地区臭氧前体物污染特征及臭氧生成敏感性分析

孔凡萍 张英磊 韩胜男 刘亚萍 刘永伟

孔凡萍,张英磊,韩胜男,等.基于GEE云平台和Sentinel-5P卫星数据的苏皖鲁豫地区臭氧前体物污染特征及臭氧生成敏感性分析[J].环境工程,2025,43(4):26-35. doi: 10.13205/j.hjgc.202504003
引用本文: 孔凡萍,张英磊,韩胜男,等.基于GEE云平台和Sentinel-5P卫星数据的苏皖鲁豫地区臭氧前体物污染特征及臭氧生成敏感性分析[J].环境工程,2025,43(4):26-35. doi: 10.13205/j.hjgc.202504003
KONG F P,ZHANG Y L,HAN S N,et al.Analysis of ozone precursor pollution characteristics and ozone formation sensitivity in the Su-Wan-Lu-Yu Region based on GEE cloud platform and Sentinel-5P satellite data[J].Environmental Engineering,2025,43(4):26-35. doi: 10.13205/j.hjgc.202504003
Citation: KONG F P,ZHANG Y L,HAN S N,et al.Analysis of ozone precursor pollution characteristics and ozone formation sensitivity in the Su-Wan-Lu-Yu Region based on GEE cloud platform and Sentinel-5P satellite data[J].Environmental Engineering,2025,43(4):26-35. doi: 10.13205/j.hjgc.202504003

基于GEE云平台和Sentinel-5P卫星数据的苏皖鲁豫地区臭氧前体物污染特征及臭氧生成敏感性分析

doi: 10.13205/j.hjgc.202504003
详细信息
    作者简介:

    孔凡萍(1989-),女,博士研究生,主要研究方向为大气环境和水环境遥感监测技术及应用。kongfanping@aircapital.cn

    通讯作者:

    张英磊(1989-),男,技术总工,主要研究方向为大气污染综合防治。zhangyinglei@aircapital.cn

Analysis of ozone precursor pollution characteristics and ozone formation sensitivity in the Su-Wan-Lu-Yu Region based on GEE cloud platform and Sentinel-5P satellite data

  • 摘要: 基于Google Earth Engine(GEE)云平台和Sentinel-5P卫星遥感数据,采用FNR(formaldehyde to nitrogen dioxide ratio)指示剂法,系统分析了2019—2023年苏皖鲁豫地区臭氧(O3)前体物及其生成敏感性的时空变化特征。研究发现,对流层甲醛(HCHO)柱浓度表现出明显的夏秋季高、冬春季低的季节变化特征,其中夏季最高,总体呈现波动上升趋势,尤其是在河南、安徽和山东三省交界地区增加较为明显;而对流层二氧化氮(NO2)柱浓度则表现出秋冬季高、春夏季低的特征,冬季最高,总体呈波动下降趋势,表明各省会及其周边城市氮氧化物(NOx )减排成效显著。O3生成敏感性以协同控制区为主,其次是挥发性有机化合物(VOCs)控制区,主要分布在郑州、济南、徐州、南京、合肥等中心城市及其周边区域,面积呈现增加趋势;NOx 控制区面积最小,主要分布在河南和安徽省的西部、南部非中心城市区域,总体呈现下降趋势。研究可为了解苏皖鲁豫地区O3前体物时空分布特征提供科学依据,对环境管理和污染防治政策的制定提供参考。
  • 1  研究区范围及地形信息示意

    1.  Schematic diagram of the scope and topographical information of the study area

    2  2018年12月—2023年11月对流层HCHO和NO2柱浓度月均变化趋势

    2.  Trends in tropospheric HCHO and NO2 column concentration from December 2018 to November 2023

    3  2019—2023年对流层HCHO和NO2柱浓度多年季节平均空间分布

    from 2019 to 2023

    3.  Multi-year seasonal average spatial distribution maps of tropospheric HCHO and NO2 column concentrations

    4  2019~2023年对流层HCHO和NO2柱浓度年均空间分布

    4.  Annual average spatial distribution of tropospheric HCHO and NO2 column concentrations from 2019 to 2023

    5  2018年12月—2023年11月对流层HCHO和NO2柱浓度变化趋势

    5.  Trends of tropospheric HCHO and NO2 column concentrations from December 2018 to November 2023

    6  2019—2023年O3污染高发时间段(4—10月)FNR空间分布

    6.  Spatial distribution of FNR during high ozone pollution periods (April to October) from 2019 to 2023

    7  2019—2023年苏皖鲁豫地区O3生成控制区面积占比变化

    7.  The variations of proportion classified by ozone sensitivity control zones in the Su-Wan-Lu-Yu region

  • [1] KONG X R,CHEN M,CHEN H R,et al. Variation characteristics and influence factors of surface ozone concentration in Lanzhou in 2018—2019[J]. Environmental Engineering,2022,40(7):69-75. 孔祥如,陈敏,陈恒蕤,等. 2018—2019年兰州市近地面臭氧浓度变化特征及其影响因素分析[J]. 环境工程,2022,40(7):69-75.
    [2] ZHOU S,HUANG B Y,CHEN H Y,et al. Pollution characteristics of PM 2.5 and O3 in the Pearl River delta and the sensitivity analysis of VOCs components[J]. Environmental Engineering,2020,38(1):42-47,92 周胜,黄报远,陈慧英,等. 珠三角城市群PM2.5和O3污染特征及VOCs组分敏感性分析[J]. 环境工程,2020,38(1):42-47,92
    [3] ZHANG Y J,LEI R Y,CUI S J,et al. Spatiotemporal trends and impact factors of PM2.5 and O3 pollution in major cities in China during 2015-2020[J]. Chin Sci Bull,2022,67:2029- 2042, 张运江,雷若媛,崔世杰,等. 2015—2020年我国主要城市PM2.5和O3污染时空变化趋势和影响因素[J]. 科学通报,2022,67(18):2029-2042.
    [4] ZHAO Y,LI C H,ZHOU K,et al. PM2.5 and O3 collaborative pollution characteristics in Xinxiang[J]. Environmental Pollution& Control,2023,45(4):541-543. 赵阳,李崇浩,周凯,等. 新乡市细颗粒物和臭氧协同污染特征[J]. 环境污染与防治,2023,45(4):541-543.
    [5] ZHANG H Y,WANG Y,LU Y L,et al. Identification of ozone pollution control zones and types in China.[J]. China Environmental Science 2021,41(9):4051-4059. 张鸿宇,王媛,卢亚灵,等. 我国臭氧污染控制分区及其控制类型识别[J]. 中国环境科学,2021,41(9):4051-4059.
    [6] PU D C,WANG D K,ZHU L,et al. Study on ozone precursors in Beijing based on OLI and TROPOMI satellite data[J]. China Environmental Science,2024,44(7):3592-3600. 蒲东川,王大康,朱雷,等. 基于OLI 和TROPOMI卫星数据的北京市臭氧前体物研究[J/OL]. 中国环境科学,2024,44(7):3592-3600.
    [7] WANG W,VAN DER A R,DING J,et al. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations[J]. Atmospheric Chemistry and Physics,2021,21(9):7253-7269.
    [8] CHEN L F,WANG Y P,ZHANG X X,et al. Satellite remote sensing monitoring of ozone and its precursors for regional secondary pollution risk control[J]. Environmental Monitoring and Forewarning,2019,11(5):13-21. 陈良富,王雅鹏,张欣欣,等. 面向区域二次污染风险控制的臭氧及其前体物卫星遥感监测[J]. 环境监控与预警,2019,11(5):13-21.
    [9] DUNCAN B N,YOSHIDA Y,OLSON J R,et al. Application of OMI observations to a space-based indicator of NO x and VOC controls on surface ozone formation[J]. Atmospheric Environment,2010,44(18):2213-2223.
    [10] BAI Y,WANG P,ZHAO P F,et al. Summertime ozone formation sensitivity and drivingfactors in Henan Province[J]. National Remote Sensing Bulletin,2022,26(5):988-1001 白杨,王盼,赵鹏飞,等. 河南省夏季臭氧生成敏感性及其驱动因素分析[J]. 遥感学报,2022,26(5):988-1001.
    [11] SONG H,ZHAO W,YANG X,et al. Ozone sensitivity analysis and ozone formation regimes division in the Beijing-Tianjin-Hebei Region based on satellite remote sensing data[J]. Atmosphere,2023,14(11):1637.
    [12] LIU Q,WU J F,WANG H,et al. Long time series extraction and change analysis of perennial and seasonal water surface in Heilongjiang basin based on google earth engine[J]. Environmental Engineering,2021,39(1):80-88. 刘清,吴君峰,王浩,等. 基于Google Earth Engine云平台的黑龙江流域长时序常年和季节性水面提取及变化分析[J]. 环境工程,2021,39(1):80-88.
    [13] DE SMEDT I,PINARDI G,VIGOUROUX C,et al. Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements[J]. Atmospheric Chemistry and Physics,2021,21(16):12561-12593.
    [14] VERHOELST T,COMPERNOLLE S,PINARDI G,et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS,MAX-DOAS and Pandonia global networks[J]. Atmospheric Measurement Techniques,2021,14(1):481-510.
    [15] VEEFKIND J P,BOERSMA K F,van ROOZENDAEL M,et al. TROPOMI:the Sentinel-5 Precursor tropospheric ozone monitoring instrument[J]. Remote Sensing of Environment,2011,120,70-83.
    [16] CHOI Y,SOURI A H. Seasonal behavior and long-term trends of tropospheric ozone,its precursors and chemical conditions over Iran:a view from space[J]. Atmospheric Environment,2015,106:232-240.
    [17] SHAN Y Y,LI L,LIU Q,et al. Spatio-temporal distribution of ozone and its precursors over Central and Eastern China based on OMI data[J]. Research of Environmental Sciences,2016,29(8):1128-1136. 单源源,李莉,刘琼,等. 基于OMI数据的中国中东部臭氧及前体物的时空分布[J]. 环境科学研究,2016,29(8):1128-1136.
    [18] ZHUANG L Y,CHEN Y P,FAN L Y,et al. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products[J]. Acta Scientiae Circumstantiae,2019,39(11):3581-3592 庄立跃,陈瑜萍,范丽雅,等. 基于OMI卫星数据和MODIS土地覆盖类型数据研究珠江三角洲臭氧敏感性[J]. 环境科学学报,2019,39(11):3581-3592.
    [19] WANG Y X,XING S L,DING N. Lake area change of chahannur lake and its responses to climate change[J]. Environmental Engineering,2022,40(11):47-53,68. 王奕璇,邢世禄,丁宁. 察汗淖尔湖泊面积变化及其对气候的响应分析[J]. 环境工程,2022,40(11):47-53,68.
    [20] ZONG H L,ZHANG X L,YUAN X P,et al. Xiaojiang River Basin ecological environmental quality spatiotemporal pattern andevolutionary trend analysis using GEE from 1990 to 2022[J]. Environmental Science,2024,45(7):4122-4136. 宗慧琳,张晓伦,袁希平,等. 利用GEE进行1990—2022年小江流域生态环境质量时空格局与演变趋势分析[J]. 环境科学,2024,45(7):4122-4136.
    [21] LIU X,ZHENG T,WAN Q,et al. Spatio-temporal characteristics of NO2 in PRD urban group and the anthropogenic influences analysis based on OMI remote sensing data[J]. Journal of Tropical Meteorology,2016,22(4).
    [22] CAO Q,ZOU L Y,WU B L,et al. Impact of two epidemic control on air quality characteristics in Shijiazhuang City[J]. Environmental Science& Technology,2022,45(2):202-209. 曹琦,邹凌云,武柏林,等. 两次疫情管控对石家庄市空气质量特征的影响[J]. 环境科学与技术,2022,45(2):202-209.
    [23] HUANG R L,ZHU Y,ZHANG B Y,et al. Impact assessment of emission control policies and COVID-19 pandemic on air qualityimprovement in Guangzhou[J]. Acta Scientiae Circumstantiae,2023,43(1):204-215 黄若琳,朱云,张冰瑶,等. 污染减排及新冠肺炎对广州空气质量影响分析[J]. 环境科学学报,2023,43(1):204-215.
    [24] GUO J,XU Q,YU S,et al. Investigation of atmospheric VOCs sources and ozone formation sensitivity during epidemic closure and control:a case study of Zhengzhou[J]. Atmospheric Pollution Research,2024,15(4):102035.
  • 加载中
图(7)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 录用日期:  2024-05-23
  • 修回日期:  2024-05-14
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回