Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin
-
摘要: 通过超效率SBM模型评估2009—2020年珠江流域47个城市的工业碳排放效率,借助莫兰指数与LISA时空跃迁方法探讨这些城市工业碳排放效率的空间分布特征和局部空间关系的变化。采用地理探测器识别主要影响因素及其交互作用,并运用多尺度地理加权回归模型分析了影响因素的空间异质性。研究发现,珠江流域工业碳排放效率总体呈上升趋势,年均增长率5.16%。空间分布显示,高效率城市集中在防城港市、玉溪市等,而低效率城市多为重工业城市。工业碳排放效率的主要影响因素包括生产力水平、对外开放程度和工业化水平。生产力水平对工业碳排放效率的影响在珠江流域东部区域逐渐减弱,对外开放程度在大多数城市对工业碳排放效率表现出负向影响,工业化水平的影响高值区为发达地区,低值区为欠发达地区。Abstract: Industry is an important engine of the national economy and a major source of carbon emissions. Research on industrial carbon emissions is crucial to achieving the "dual carbon" goal and regional sustainable development. The Pearl River Basin is a key area for economic and ecological environmental protection in China. However, there is no research on industrial carbon emissions in the Pearl River Basin. The industrial carbon emission efficiencies of 47 cities in the Pearl River Basin from 2009 to 2020 were evaluated using the super-efficiency SBM model. The spatial distribution characteristics and changes in local spatial relations of these cities' industrial carbon emission efficiencies were explored employing Moran's Index and LISA temporal transition methods. A geographical detector was used to identify the main influencing factors and their interactions, and a multi-scale geographically weighted regression model was applied to analyze the spatial heterogeneity of the influencing factors. The study found an overall rising trend in industrial carbon emission efficiency in the Pearl River Basin, with an average annual growth rate of 5.16%. Spatial distribution indicates that high-efficiency cities are concentrated in areas like Fangchenggang and Yuxi, while low-efficiency cities are primarily heavy industrial cities. The main factors affecting industrial carbon emission efficiency include productivity level,openness degree, and industrialization level. The influence of productivity level on industrial carbon emission efficiency diminished gradually in the eastern part of the basin, the degree of openness exhibits a negative impact on industrial carbon emission efficiency in most cities, and the impact of industrialization level varies, with higher values in developed regions and lower values in less-developed regions.
-
1 珠江流域地区工业年碳排放效率(2009、2012、2015、2020年)
1. Industrial carbon emission efficiencies of the Pearl River Basin in 2009, 2012, 2015, 2020
地区 2009 2012 2015 2020 均值 年均变化率/% 数值 排名 数值 排名 数值 排名 数值 排名 红河 0.36 39 0.37 38 0.45 35 0.46 37 0.41 8.39 昆明 0.37 37 0.44 30 1.02 10 1.39 1 0.80 55.41 曲靖 0.49 25 0.36 40 0.53 28 0.45 39 0.46 -2.39 文山 0.66 12 0.60 17 0.58 25 0.59 20 0.61 -3.98 玉溪 0.80 8 0.65 14 1.12 2 0.85 12 0.85 2.03 安顺 0.71 11 1.19 2 0.47 32 0.67 18 0.76 -1.79 毕节 0.25 45 0.39 35 0.60 22 0.55 25 0.45 29.03 贵阳 0.25 46 0.43 32 1.15 1 1.14 7 0.74 65.34 六盘水 1.23 4 0.52 24 1.08 6 1.20 4 1.01 -0.90 黔东南 0.47 27 0.37 36 0.39 41 0.47 36 0.43 0.05 黔南 0.36 38 0.37 37 0.36 43 0.42 43 0.38 5.10 黔西南 0.57 17 0.51 25 0.78 17 0.55 26 0.60 -1.34 百色 0.32 41 0.47 28 0.59 23 0.51 31 0.47 16.68 北海 1.09 6 0.76 7 0.86 13 1.12 9 0.96 0.82 崇左 1.48 1 0.37 39 1.06 7 1.20 3 1.03 -6.57 防城港 1.15 5 0.90 3 0.80 16 1.16 6 1.00 0.16 贵港 0.46 29 0.49 27 0.55 26 0.66 19 0.54 12.47 桂林 0.52 23 0.76 6 1.11 3 0.52 30 0.73 -0.33 河池 0.41 34 0.41 34 1.10 5 0.54 29 0.61 9.64 贺州 1.33 2 0.67 12 0.59 24 0.72 15 0.83 -18.37 来宾 0.41 33 0.50 26 0.45 34 0.56 23 0.48 11.16 柳州 0.47 28 0.77 4 0.91 12 1.18 5 0.83 36.42 南宁 1.24 3 0.29 45 0.31 46 0.50 32 0.58 -26.26 钦州 0.71 10 0.54 21 0.50 30 0.55 24 0.58 -8.22 梧州 0.54 21 0.77 5 0.84 14 0.87 10 0.76 17.48 玉林 0.48 26 0.67 11 1.04 8 0.76 14 0.74 16.98 潮州 0.54 19 0.61 15 0.44 36 0.54 27 0.54 -0.15 东莞 0.22 47 0.30 44 0.40 40 0.67 17 0.39 45.91 佛山 0.64 13 0.58 18 0.74 18 0.84 13 0.70 9.92 广州 0.62 15 0.75 8 1.04 9 1.14 8 0.89 22.60 河源 0.52 24 0.53 23 0.51 29 0.48 33 0.51 -2.49 惠州 0.29 42 0.43 31 0.54 27 0.54 28 0.45 23.45 江门 0.44 32 0.30 43 0.43 37 0.46 38 0.40 1.66 揭阳 0.38 35 0.61 16 0.66 20 0.58 21 0.56 15.29 茂名 0.54 20 0.68 10 0.71 19 0.85 11 0.69 16.28 梅州 0.46 30 0.47 29 0.48 31 0.43 42 0.46 -2.58 清远 0.62 14 0.28 47 0.33 44 0.37 45 0.40 -15.92 汕头 0.26 44 0.26 46 0.30 47 0.48 34 0.33 22.01 汕尾 0.72 9 1.24 1 0.62 21 0.43 40 0.75 -15.54 韶关 0.26 43 0.30 42 0.32 45 0.37 46 0.32 11.64 深圳 0.60 16 0.65 13 0.80 15 1.32 2 0.84 29.99 阳江 0.55 18 0.54 22 0.41 39 0.39 44 0.47 -11.12 云浮 1.01 7 0.55 20 0.96 11 0.35 47 0.71 -29.88 湛江 0.53 22 0.70 9 1.10 4 0.67 16 0.75 8.20 肇庆 0.44 31 0.56 19 0.41 38 0.43 41 0.46 -0.42 中山 0.38 36 0.43 33 0.46 33 0.47 35 0.43 8.00 珠海 0.34 40 0.34 41 0.37 42 0.57 22 0.41 18.70 均值 0.58 0.55 0.66 0.68 0.62 5.16 2 工业碳排放效率莫兰散点图中各象限中的主要市(自治州)
2. The cities and autonomous prefectures in each quadrant of the Moran scatter plot of industrial carbon emission efficiency
类型 2009年 2012年 2015年 2020年 高-高 清远、防城港、文山、安顺、六盘水、玉溪,共6个城市 防城港、桂林、文山、安顺、玉溪,共5个城市 防城港、桂林、河池、昆明、六盘水、贵阳、玉溪,共7个城市 防城港、崇左、广州、东莞、深圳、佛山,共6个城市 低-高 韶关、桂林、河池、百色、昆明、红河、贵阳、黔东南,共8个城市 清远、韶关、河池、百色、昆明、六盘水、红河、贵阳、黔东南,共9个城市 清远、韶关、百色、文山、安顺、红河、黔东南,共7个城市 清远、韶关、桂林、河池、清州、贺州、汕尾、惠州、肇庆、中山、珠海、曲靖、毕节、黔南、红河,共15个城市 低-低 东莞、中山、潮州、揭阳、河源、惠州、梅州、江门、珠海、阳江、肇庆、湛江、茂名、玉林、贵港、来宾、柳州、梧州、曲靖、黔南、黔西南、毕节、汕头,共23个城市 东莞、中山、河源、惠州、梅州、江门、珠海、阳江、云浮、钦州、崇左、南宁、贵港、来宾、曲靖、黔西、毕节、汕头、黔南,共19个城市 东莞、中山、潮州、揭阳、汕尾、河源、惠州、梅州、江门、珠海、阳江、肇庆、贺州、钦州、南宁、贵港、来宾、曲靖、黔南、毕节、汕头,共21个城市 潮州、揭阳、河源、江门、阳江、云浮、南宁、贵港、来宾、黔西南、黔东南、文山、汕头、百色、玉林、安顺、梅州,共17个城市 高-低 汕尾、深圳、广州、佛山、云浮、贺州、钦州、北海、崇左、南宁,共10个城市 潮州、汕尾、深圳、广州、佛山、肇庆、贺州、湛江、茂名、玉林、北海、柳州、梧州,共14个城市 深圳、广州、佛山、云浮、湛江、茂名、玉林、北海、崇左、柳州、梧州、黔西南,共12个城市 茂名、柳州、梧州、北海、湛江、六盘水、贵阳、昆明、玉溪,共9个城市 3 工业碳排放效率时空跃迁矩阵
3. Spatiotemporal transition matrix of industrial carbon emission efficiency
时段 HH LH LL HL 2009—2012年 HH I型 II型(0.043) IV(1)型(0.021) III型(0.064) LH II型(0.085) I型(0.106) III型 IV(2)型(0.021) LL IV(1)型(0.043) III型(0.021) I型(0.149) II型(0.128) HL III型(0.128) IV(2)型 II型(0.106) I型(0.085) 2012—2015年 HH I型(0.149) II型(0.043) IV(1)型(0.043) III型(0.021) LH II型(0.043) I型(0.043) III型(0.064) IV(2)型(0.021) LL IV(1)型(0.021) III型(0.021) I型(0.128) II型(0.106) HL III型(0.021) IV(2)型(0.064) II型(0.106) I型(0.106) 2015—2020年 HH I型(0.064) II型(0.085) IV(1)型(0.043) III型(0.043) LH II型(0.021) I型(0.128) III型(0.021) IV(2)型 LL IV(1)型 III型 I型(0.234) II型(0.106) HL III型 IV(2)型(0.021) II型(0.021) I型(0.213) 4 工业碳排放效率空间分异的因子探测结果
4. Factor detection results of spatial-temporal differentiation of industrial carbon emission efficiency
探测因子 q 平均值 排序 2009年 2012年 2015年 2020年 工业化水平 0.18 0.23 0.17 0.27 0.21 3 对外开放程度 0.31 0.3 0.18 0.18 0.24 2 科学技术水平 0.19 0.24 0.13 0.06 0.16 5 能源消耗强度 0.21 0.18 0.2 0.08 0.18 4 生产力水平 0.39 0.37 0.33 0.12 0.3 1 5 OLS、GWR和MGWR模型回归检验指标
5. Regression indexes of OLS, GWR and MGWR models
模型 OLS GWR MGWR AICc 129.496 129.798 131.721 R2 0.239 0.298 0.345 调整R2 0.204 0.220 0.237 残差平方和 35.767 32.972 33.128 -
[1] CHEN C,LI W,ZHAI M Y,et al. Impact of inter-regional trade on shanghai’ s energy-related carbon emissions[J]. Environmental Engineering,2023,41(10):245-252,259. 陈晨,李薇,翟梦瑜,等. 区域间贸易对上海市能源碳排放影响[J]. 环境工程,2023,41(10):245-252,259. [2] BIAN Y,LIN X Q,ZHOU X,et al. Temporal and spatial evolution characteristics and influencing factors of industrial carbon emissions in Beijing-Tianjin-Hebei region[J]. Environmental Science& Technology,2021,44(11):37-47. 边宇,蔺雪芹,周笑,等. 京津冀工业碳排放时空演化特征及影响因素[J]. 环境科学与技术,2021,44(11):37-47. [3] ZHANG B,WEI D Q,DING YI,et al. Research on cities’ carbon emissions and their spatiotemporal evolution coupled with nighttime light image and land use data in the Pearl River Basin[J]. Advances in Earth Science,2024,39(3):317-328. 张斌,卫丹琪,丁乙,等. 基于夜间灯光和土地利用的珠江流域城市碳排放估算及其时空动态特征研究[J]. 地球科学进展,2024,39(3):317-328. [4] DING Y,YIN J,JIANG H T,et al. System dynamics prediction of carbon peaking in Pearl River delta[J]. Environmental Engineering,2023,41(7):22-29. 丁乙,尹剑,姜洪涛,等. 珠三角碳达峰系统动力学预测[J]. 环境工程,2023,41(7):22-29. [5] MI Y,LIN X Q,WANG D,et al. Spatial-temporal evolution characteristics and influencing factors of industrial carbon emission efficiency in eastern coastal areas of China[J]. Journal of Xi'an University of Technology,2022,38(4):476-486. 米莹,蔺雪芹,王岱,等. 中国东部沿海地区工业碳排放效率时空演化特征及影响因素[J]. 西安理工大学学报,2022,38(4):476-486. [6] CHENG D Y,ZENG G. Impact on spatial effect of green technology innovation on industrial carbon dioxide emissions in Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin,2023,32(6):1152-1164. 程丹亚,曾刚. 长三角区域绿色技术创新对工业二氧化碳排放影响的空间效应研究[J]. 长江流域资源与环境,2023,32(6):1152-1164. [7] LU S,LI W. Spatial network structure of industrial carbon emission of city clusters in the middle reaches of the Yangtze River and its influencing factors[J]. Environmental Science& Technology,2023,46(8):227-236. 陆杉,李雯. 长江中游城市群工业碳排放空间关联及其影响因素[J]. 环境科学与技术,2023,46(8):227-236. [8] WANG X L,QU L H. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emissions in the Yellow River Basin[J]. Environmental Science,2024,45(10):5613-5623. 王喜莲,屈丽航. 黄河流域工业碳排放时空演化特征及影响因素[J]. 环境科学,2024,45(10):5613-5623. [9] YIN JIAN,JIANG H T,JIAO L,et al. Spatio-temporal variation and influencing factors of industrial carbon emission efficiency in Guizhou based on Geodetector and multi-scale geographically weighted regression[J]. Scientia Geographica Sinica,2024,44(7):1217-1227 尹剑,姜洪涛,焦露,等. 基于Geodetector和MGWR的贵州工业碳排放效率时空演化及影响因素分析[J]. 地理科学,2024,44(7):1217-1227. [10] WANG S J,GAO S,HUANG Y Y,et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica,2020,75(6):1316-1330. 王少剑,高爽,黄永源,等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报,2020,75(6):1316-1330. [11] TENG X,LIU F,CHIU Y. The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model[J]. Energy,2021,216:119301. [12] REN H Y,DU R L,XIE G L,et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering,2023,41(10):195-203,244. 任宏洋,杜若岚,谢贵林,等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程,2023,41(10):195-203,244. [13] WANG Z,CHENG Z H. Spatiotemporal interaction characteristics and transitionmechanism of carbon intensity in China's service industryunder the targets of carbon peak and carbon neutrality[J]. Acta Geographica Sinica,2023,78(1):54-70. 王峥,程占红.“双碳”目标下中国服务业碳强度时空交互特征及跃迁机制[J]. 地理学报,2023,78(1):54-70. [14] LIU J,GE X,ZHAO Z Y. Research on spatio-temporal evolution of carbon arrangement in North China cities and its influencing factors[J]. Environmental Engineering,2023,41(10):204-212,222. 刘杰,葛潇,赵振宇. 华北城市群碳排时空演变格局及影响因素研究[J]. 环境工程,2023,41(10):204-212,222. [15] PAN S Y,ZHANG M L. Prediction of carbon dioxide emission in gansu province based on BP neural network and its influencing factors[J]. Environmental Engineering,2023,41(7):61-68,85. 潘思羽,张美玲. 基于BP神经网络的甘肃省二氧化碳排放预测及影响因素研究[J]. 环境工程,2023,41(7):61-68,85. [16] ZHANG M,LI L,CHENG Z. Research on carbon emission efficiency in the Chinese construction industry based on a three-stage DEA-Tobit model[J]. Environmental Science and Pollution Research,2021,28(37):51120-51136. [17] REY S,JANIKAS M. STARS:Space-time analysis of regional systems[J]. Geographical Analysis,2006,38(1):67-86. [18] YE X,REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science,2013,50(1):315-339. [19] REY S. Space-Time patterns of rank concordance:local indicators of mobility association with application to spatial income inequality dynamics[J]. Annals of the American Association of Geographers,2016,106(4):788-803. [20] WANG J F,XU C D. Geodetector:principles and prospects[J]. Acta Geographica Sinica,2017,72(1):116-134. 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134. [21] SHEN T Y,YU H C,ZHOU L,et al. On hedonic price of second-hand houses in beijing based on multi-scalegeographically weighted regression:scale law of spatial heterogeneity[J]. Economic Geography,2020,40(3):75-83. 沈体雁,于瀚辰,周麟,等. 北京市二手住宅价格影响机制:基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理,2020,40(3):75-83. [22] LIN X Q,ZHANG Y Y,TANG X Y. Comparative research on industrial carbon emission efficiency with single factorand full one:taking Yunnan Province as an example[J]. Ecological Economy,2019,35(8):20-27. 林秀群,张杨杨,唐向阳. 工业行业单要素和全要素碳排放效率的比较研究——以云南省为例[J]. 生态经济,2019,35(8):20-27. [23] XI Y Q,JI X. An empirical study on carbon emission efficiency of industrial industry in China:considering the super efficiency model of unexpected output sbm and the application of DEA window method[J]. Science and Technology Management Research,2019,39(17):53-62. 郗永勤,吉星. 我国工业行业碳排放效率实证研究:考虑非期望产出SBM超效率模型与DEA视窗方法的应用[J]. 科技管理研究,2019,39(17):53-62. [24] SUN Y X,CHENG Y,ZHANG H S. Study on the impact of urban industrial land intensive use on carbon emission efficiency:A case study of 15 sub-provincial cities in China[J]. Resources and Environment in the Yangtze Basin,2019,29(8):1703-1712. 孙艺璇,程钰,张含朔. 城市工业土地集约利用对碳排放效率的影响研究:以中国15个副省级城市为例[J]. 长江流域资源与环境,2019,29(8):1703-1712. [25] ZHOU Z L,CHENG X F. Spatial heterogeneity of PM2.5 influencing factors in Chinese cities based on MGWR model[J]. China Environmental Science,2021,41(6):2552-2561. 周志凌,程先富. 基于MGWR模型的中国城市PM2.5影响因素空间异质性[J]. 中国环境科学,2021,41(6):2552-2561. [26] CAO J H,ZHOU X Y,ZHANG L. Spatial and temporal evolution and decoupling effect of industrial carbon emissions in less developed cities:a case study of Guangxi[J]. Science and Technology Management Research,2023,43(22):211-220. 曹金华,周小勇,章玲. 欠发达城市工业碳排放的时空演变及脱钩效应:以广西地市为例[J]. 科技管理研究,2023,43(22):211-220. [27] HUANG Y S,LIU J J. Study on decoupling status and driving factors of industrial carbon emissions in low-carbon pilot cities[J]. Ecological Economy,2024,40(4):13-19,54. 黄元生,刘佳婕. 低碳试点城市工业碳排放脱钩状态及驱动因素研究[J]. 生态经济,2024,40(4):13-19,54. -