中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江流域城市工业碳排放效率时空动态特征及影响因素研究

尹剑 孟艺妮 姜洪涛

尹剑,孟艺妮,姜洪涛.珠江流域城市工业碳排放效率时空动态特征及影响因素研究[J].环境工程,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004
引用本文: 尹剑,孟艺妮,姜洪涛.珠江流域城市工业碳排放效率时空动态特征及影响因素研究[J].环境工程,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004
YIN J,MENG Y N,JIANG H T.Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin[J].Environmental Engineering,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004
Citation: YIN J,MENG Y N,JIANG H T.Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin[J].Environmental Engineering,2025,43(4):36-45. doi: 10.13205/j.hjgc.202504004

珠江流域城市工业碳排放效率时空动态特征及影响因素研究

doi: 10.13205/j.hjgc.202504004
基金项目: 

贵州省高校人文社会科学研究项目“贵州产业部门碳排放影响因素及其关联效应研究” (2024RW321)

详细信息
    作者简介:

    尹剑(1984-),男,教授,主要研究方向为资源区域科学。jiany@mail.gufe.edu.cn

    通讯作者:

    姜洪涛(1998-),男,博士研究生,主要研究方向为管理科学与工程。2803869189@qq.com

Spatiotemporal dynamics of industrial carbon emission efficiency and its influencing factors in the Pearl River Basin

  • 摘要: 通过超效率SBM模型评估2009—2020年珠江流域47个城市的工业碳排放效率,借助莫兰指数与LISA时空跃迁方法探讨这些城市工业碳排放效率的空间分布特征和局部空间关系的变化。采用地理探测器识别主要影响因素及其交互作用,并运用多尺度地理加权回归模型分析了影响因素的空间异质性。研究发现,珠江流域工业碳排放效率总体呈上升趋势,年均增长率5.16%。空间分布显示,高效率城市集中在防城港市、玉溪市等,而低效率城市多为重工业城市。工业碳排放效率的主要影响因素包括生产力水平、对外开放程度和工业化水平。生产力水平对工业碳排放效率的影响在珠江流域东部区域逐渐减弱,对外开放程度在大多数城市对工业碳排放效率表现出负向影响,工业化水平的影响高值区为发达地区,低值区为欠发达地区。
  • 1  研究区域

    1.  Map of the research area

    2  LISA时间路径几何特征的空间分布

    2.  Spatial distribution of geometric features of the LISA time path

    3  珠江流域工业碳排放效率空间分异的交互探测

    3.  Interactive detection of spatial-temporal differentiation of industrial carbon emission efficiency in the Pearl River Basin

    4  MGWR回归系数的空间格局

    4.  Spatial patterns of MGWR regression coefficients

    1  珠江流域地区工业年碳排放效率(2009、2012、2015、2020年)

    1.   Industrial carbon emission efficiencies of the Pearl River Basin in 2009, 2012, 2015, 2020

    地区2009201220152020均值年均变化率/%
    数值排名数值排名数值排名数值排名
    红河0.36390.37380.45350.46370.418.39
    昆明0.37370.44301.02101.3910.8055.41
    曲靖0.49250.36400.53280.45390.46-2.39
    文山0.66120.60170.58250.59200.61-3.98
    玉溪0.8080.65141.1220.85120.852.03
    安顺0.71111.1920.47320.67180.76-1.79
    毕节0.25450.39350.60220.55250.4529.03
    贵阳0.25460.43321.1511.1470.7465.34
    六盘水1.2340.52241.0861.2041.01-0.90
    黔东南0.47270.37360.39410.47360.430.05
    黔南0.36380.37370.36430.42430.385.10
    黔西南0.57170.51250.78170.55260.60-1.34
    百色0.32410.47280.59230.51310.4716.68
    北海1.0960.7670.86131.1290.960.82
    崇左1.4810.37391.0671.2031.03-6.57
    防城港1.1550.9030.80161.1661.000.16
    贵港0.46290.49270.55260.66190.5412.47
    桂林0.52230.7661.1130.52300.73-0.33
    河池0.41340.41341.1050.54290.619.64
    贺州1.3320.67120.59240.72150.83-18.37
    来宾0.41330.50260.45340.56230.4811.16
    柳州0.47280.7740.91121.1850.8336.42
    南宁1.2430.29450.31460.50320.58-26.26
    钦州0.71100.54210.50300.55240.58-8.22
    梧州0.54210.7750.84140.87100.7617.48
    玉林0.48260.67111.0480.76140.7416.98
    潮州0.54190.61150.44360.54270.54-0.15
    东莞0.22470.30440.40400.67170.3945.91
    佛山0.64130.58180.74180.84130.709.92
    广州0.62150.7581.0491.1480.8922.60
    河源0.52240.53230.51290.48330.51-2.49
    惠州0.29420.43310.54270.54280.4523.45
    江门0.44320.30430.43370.46380.401.66
    揭阳0.38350.61160.66200.58210.5615.29
    茂名0.54200.68100.71190.85110.6916.28
    梅州0.46300.47290.48310.43420.46-2.58
    清远0.62140.28470.33440.37450.40-15.92
    汕头0.26440.26460.30470.48340.3322.01
    汕尾0.7291.2410.62210.43400.75-15.54
    韶关0.26430.30420.32450.37460.3211.64
    深圳0.60160.65130.80151.3220.8429.99
    阳江0.55180.54220.41390.39440.47-11.12
    云浮1.0170.55200.96110.35470.71-29.88
    湛江0.53220.7091.1040.67160.758.20
    肇庆0.44310.56190.41380.43410.46-0.42
    中山0.38360.43330.46330.47350.438.00
    珠海0.34400.34410.37420.57220.4118.70
    均值0.580.550.660.680.625.16
    下载: 导出CSV

    2  工业碳排放效率莫兰散点图中各象限中的主要市(自治州)

    2.   The cities and autonomous prefectures in each quadrant of the Moran scatter plot of industrial carbon emission efficiency

    类型2009年2012年2015年2020年
    高-高清远、防城港、文山、安顺、六盘水、玉溪,共6个城市防城港、桂林、文山、安顺、玉溪,共5个城市防城港、桂林、河池、昆明、六盘水、贵阳、玉溪,共7个城市防城港、崇左、广州、东莞、深圳、佛山,共6个城市
    低-高韶关、桂林、河池、百色、昆明、红河、贵阳、黔东南,共8个城市清远、韶关、河池、百色、昆明、六盘水、红河、贵阳、黔东南,共9个城市清远、韶关、百色、文山、安顺、红河、黔东南,共7个城市清远、韶关、桂林、河池、清州、贺州、汕尾、惠州、肇庆、中山、珠海、曲靖、毕节、黔南、红河,共15个城市
    低-低东莞、中山、潮州、揭阳、河源、惠州、梅州、江门、珠海、阳江、肇庆、湛江、茂名、玉林、贵港、来宾、柳州、梧州、曲靖、黔南、黔西南、毕节、汕头,共23个城市东莞、中山、河源、惠州、梅州、江门、珠海、阳江、云浮、钦州、崇左、南宁、贵港、来宾、曲靖、黔西、毕节、汕头、黔南,共19个城市东莞、中山、潮州、揭阳、汕尾、河源、惠州、梅州、江门、珠海、阳江、肇庆、贺州、钦州、南宁、贵港、来宾、曲靖、黔南、毕节、汕头,共21个城市潮州、揭阳、河源、江门、阳江、云浮、南宁、贵港、来宾、黔西南、黔东南、文山、汕头、百色、玉林、安顺、梅州,共17个城市
    高-低汕尾、深圳、广州、佛山、云浮、贺州、钦州、北海、崇左、南宁,共10个城市潮州、汕尾、深圳、广州、佛山、肇庆、贺州、湛江、茂名、玉林、北海、柳州、梧州,共14个城市深圳、广州、佛山、云浮、湛江、茂名、玉林、北海、崇左、柳州、梧州、黔西南,共12个城市茂名、柳州、梧州、北海、湛江、六盘水、贵阳、昆明、玉溪,共9个城市
    下载: 导出CSV

    3  工业碳排放效率时空跃迁矩阵

    3.   Spatiotemporal transition matrix of industrial carbon emission efficiency

    时段HHLHLLHL
    2009—2012年HHI型II型(0.043)IV(1)型(0.021)III型(0.064)
    LHII型(0.085)I型(0.106)III型IV(2)型(0.021)
    LLIV(1)型(0.043)III型(0.021)I型(0.149)II型(0.128)
    HLIII型(0.128)IV(2)型II型(0.106)I型(0.085)
    2012—2015年HHI型(0.149)II型(0.043)IV(1)型(0.043)III型(0.021)
    LHII型(0.043)I型(0.043)III型(0.064)IV(2)型(0.021)
    LLIV(1)型(0.021)III型(0.021)I型(0.128)II型(0.106)
    HLIII型(0.021)IV(2)型(0.064)II型(0.106)I型(0.106)
    2015—2020年HHI型(0.064)II型(0.085)IV(1)型(0.043)III型(0.043)
    LHII型(0.021)I型(0.128)III型(0.021)IV(2)型
    LLIV(1)型III型I型(0.234)II型(0.106)
    HLIII型IV(2)型(0.021)II型(0.021)I型(0.213)
    下载: 导出CSV

    4  工业碳排放效率空间分异的因子探测结果

    4.   Factor detection results of spatial-temporal differentiation of industrial carbon emission efficiency

    探测因子q平均值排序
    2009年2012年2015年2020年
    工业化水平0.180.230.170.270.213
    对外开放程度0.310.30.180.180.242
    科学技术水平0.190.240.130.060.165
    能源消耗强度0.210.180.20.080.184
    生产力水平0.390.370.330.120.31
    下载: 导出CSV

    5  OLS、GWR和MGWR模型回归检验指标

    5.   Regression indexes of OLS, GWR and MGWR models

    模型OLSGWRMGWR
    AICc129.496129.798131.721
    R20.2390.2980.345
    调整R20.2040.2200.237
    残差平方和35.76732.97233.128
    下载: 导出CSV
  • [1] CHEN C,LI W,ZHAI M Y,et al. Impact of inter-regional trade on shanghai’ s energy-related carbon emissions[J]. Environmental Engineering,2023,41(10):245-252,259. 陈晨,李薇,翟梦瑜,等. 区域间贸易对上海市能源碳排放影响[J]. 环境工程,2023,41(10):245-252,259.
    [2] BIAN Y,LIN X Q,ZHOU X,et al. Temporal and spatial evolution characteristics and influencing factors of industrial carbon emissions in Beijing-Tianjin-Hebei region[J]. Environmental Science& Technology,2021,44(11):37-47. 边宇,蔺雪芹,周笑,等. 京津冀工业碳排放时空演化特征及影响因素[J]. 环境科学与技术,2021,44(11):37-47.
    [3] ZHANG B,WEI D Q,DING YI,et al. Research on cities’ carbon emissions and their spatiotemporal evolution coupled with nighttime light image and land use data in the Pearl River Basin[J]. Advances in Earth Science,2024,39(3):317-328. 张斌,卫丹琪,丁乙,等. 基于夜间灯光和土地利用的珠江流域城市碳排放估算及其时空动态特征研究[J]. 地球科学进展,2024,39(3):317-328.
    [4] DING Y,YIN J,JIANG H T,et al. System dynamics prediction of carbon peaking in Pearl River delta[J]. Environmental Engineering,2023,41(7):22-29. 丁乙,尹剑,姜洪涛,等. 珠三角碳达峰系统动力学预测[J]. 环境工程,2023,41(7):22-29.
    [5] MI Y,LIN X Q,WANG D,et al. Spatial-temporal evolution characteristics and influencing factors of industrial carbon emission efficiency in eastern coastal areas of China[J]. Journal of Xi'an University of Technology,2022,38(4):476-486. 米莹,蔺雪芹,王岱,等. 中国东部沿海地区工业碳排放效率时空演化特征及影响因素[J]. 西安理工大学学报,2022,38(4):476-486.
    [6] CHENG D Y,ZENG G. Impact on spatial effect of green technology innovation on industrial carbon dioxide emissions in Yangtze River Delta[J]. Resources and Environment in the Yangtze Basin,2023,32(6):1152-1164. 程丹亚,曾刚. 长三角区域绿色技术创新对工业二氧化碳排放影响的空间效应研究[J]. 长江流域资源与环境,2023,32(6):1152-1164.
    [7] LU S,LI W. Spatial network structure of industrial carbon emission of city clusters in the middle reaches of the Yangtze River and its influencing factors[J]. Environmental Science& Technology,2023,46(8):227-236. 陆杉,李雯. 长江中游城市群工业碳排放空间关联及其影响因素[J]. 环境科学与技术,2023,46(8):227-236.
    [8] WANG X L,QU L H. Spatiotemporal evolution characteristics and influencing factors of industrial carbon emissions in the Yellow River Basin[J]. Environmental Science,2024,45(10):5613-5623. 王喜莲,屈丽航. 黄河流域工业碳排放时空演化特征及影响因素[J]. 环境科学,2024,45(10):5613-5623.
    [9] YIN JIAN,JIANG H T,JIAO L,et al. Spatio-temporal variation and influencing factors of industrial carbon emission efficiency in Guizhou based on Geodetector and multi-scale geographically weighted regression[J]. Scientia Geographica Sinica,2024,44(7):1217-1227 尹剑,姜洪涛,焦露,等. 基于Geodetector和MGWR的贵州工业碳排放效率时空演化及影响因素分析[J]. 地理科学,2024,44(7):1217-1227.
    [10] WANG S J,GAO S,HUANG Y Y,et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model[J]. Acta Geographica Sinica,2020,75(6):1316-1330. 王少剑,高爽,黄永源,等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报,2020,75(6):1316-1330.
    [11] TENG X,LIU F,CHIU Y. The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model[J]. Energy,2021,216:119301.
    [12] REN H Y,DU R L,XIE G L,et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering,2023,41(10):195-203,244. 任宏洋,杜若岚,谢贵林,等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程,2023,41(10):195-203,244.
    [13] WANG Z,CHENG Z H. Spatiotemporal interaction characteristics and transitionmechanism of carbon intensity in China's service industryunder the targets of carbon peak and carbon neutrality[J]. Acta Geographica Sinica,2023,78(1):54-70. 王峥,程占红.“双碳”目标下中国服务业碳强度时空交互特征及跃迁机制[J]. 地理学报,2023,78(1):54-70.
    [14] LIU J,GE X,ZHAO Z Y. Research on spatio-temporal evolution of carbon arrangement in North China cities and its influencing factors[J]. Environmental Engineering,2023,41(10):204-212,222. 刘杰,葛潇,赵振宇. 华北城市群碳排时空演变格局及影响因素研究[J]. 环境工程,2023,41(10):204-212,222.
    [15] PAN S Y,ZHANG M L. Prediction of carbon dioxide emission in gansu province based on BP neural network and its influencing factors[J]. Environmental Engineering,2023,41(7):61-68,85. 潘思羽,张美玲. 基于BP神经网络的甘肃省二氧化碳排放预测及影响因素研究[J]. 环境工程,2023,41(7):61-68,85.
    [16] ZHANG M,LI L,CHENG Z. Research on carbon emission efficiency in the Chinese construction industry based on a three-stage DEA-Tobit model[J]. Environmental Science and Pollution Research,2021,28(37):51120-51136.
    [17] REY S,JANIKAS M. STARS:Space-time analysis of regional systems[J]. Geographical Analysis,2006,38(1):67-86.
    [18] YE X,REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science,2013,50(1):315-339.
    [19] REY S. Space-Time patterns of rank concordance:local indicators of mobility association with application to spatial income inequality dynamics[J]. Annals of the American Association of Geographers,2016,106(4):788-803.
    [20] WANG J F,XU C D. Geodetector:principles and prospects[J]. Acta Geographica Sinica,2017,72(1):116-134. 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.
    [21] SHEN T Y,YU H C,ZHOU L,et al. On hedonic price of second-hand houses in beijing based on multi-scalegeographically weighted regression:scale law of spatial heterogeneity[J]. Economic Geography,2020,40(3):75-83. 沈体雁,于瀚辰,周麟,等. 北京市二手住宅价格影响机制:基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理,2020,40(3):75-83.
    [22] LIN X Q,ZHANG Y Y,TANG X Y. Comparative research on industrial carbon emission efficiency with single factorand full one:taking Yunnan Province as an example[J]. Ecological Economy,2019,35(8):20-27. 林秀群,张杨杨,唐向阳. 工业行业单要素和全要素碳排放效率的比较研究——以云南省为例[J]. 生态经济,2019,35(8):20-27.
    [23] XI Y Q,JI X. An empirical study on carbon emission efficiency of industrial industry in China:considering the super efficiency model of unexpected output sbm and the application of DEA window method[J]. Science and Technology Management Research,2019,39(17):53-62. 郗永勤,吉星. 我国工业行业碳排放效率实证研究:考虑非期望产出SBM超效率模型与DEA视窗方法的应用[J]. 科技管理研究,2019,39(17):53-62.
    [24] SUN Y X,CHENG Y,ZHANG H S. Study on the impact of urban industrial land intensive use on carbon emission efficiency:A case study of 15 sub-provincial cities in China[J]. Resources and Environment in the Yangtze Basin,2019,29(8):1703-1712. 孙艺璇,程钰,张含朔. 城市工业土地集约利用对碳排放效率的影响研究:以中国15个副省级城市为例[J]. 长江流域资源与环境,2019,29(8):1703-1712.
    [25] ZHOU Z L,CHENG X F. Spatial heterogeneity of PM2.5 influencing factors in Chinese cities based on MGWR model[J]. China Environmental Science,2021,41(6):2552-2561. 周志凌,程先富. 基于MGWR模型的中国城市PM2.5影响因素空间异质性[J]. 中国环境科学,2021,41(6):2552-2561.
    [26] CAO J H,ZHOU X Y,ZHANG L. Spatial and temporal evolution and decoupling effect of industrial carbon emissions in less developed cities:a case study of Guangxi[J]. Science and Technology Management Research,2023,43(22):211-220. 曹金华,周小勇,章玲. 欠发达城市工业碳排放的时空演变及脱钩效应:以广西地市为例[J]. 科技管理研究,2023,43(22):211-220.
    [27] HUANG Y S,LIU J J. Study on decoupling status and driving factors of industrial carbon emissions in low-carbon pilot cities[J]. Ecological Economy,2024,40(4):13-19,54. 黄元生,刘佳婕. 低碳试点城市工业碳排放脱钩状态及驱动因素研究[J]. 生态经济,2024,40(4):13-19,54.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-03
  • 录用日期:  2024-09-03
  • 修回日期:  2024-08-16
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回