Research on a prediction model for carbon emissions of construction industry based on MIC feature extraction and ICEEMD-RIME-DHKELM
-
摘要: 为解决建筑业碳排放研究中影响因素选取局限性、数据预处理不足、碳排放复杂动态变化及非线性问题,提出了一种基于最大信息系数(MIC)特征提取、改进互补集合经验模态分解(ICEEMD)、雾凇优化算法(RIME)与深度混合核极限学习机(DHKELM)的建筑业碳排放量预测模型。首先,根据IPCC计算方法,从直接和间接两个方面测算 1992—2021年我国建筑业碳排放量,基于STIRPAT模型选取年末总人口数、国内生产总值、建筑业房屋竣工面积和能源结构等17个影响建筑业碳排放量的因素,然后利用灰色关联分析和MIC方法两阶段筛选出12个关键影响因素;其次,使用ICEEMD将建筑业碳排放量分解为多个平稳序列和一个残差项,并将其分别代入RIME算法优化关键参数后的DHKELM模型中。最后,将各分解序列的预测结果相加获得建筑业碳排放预测值,并对比分析多种基准模型的预测结果。结果显示:MIC-ICEEMD-RIME-DHKELM模型的预测性能最优,其均方根误差、平均绝对误差、平均绝对百分比误差和绝对相关系数分别为0.2782亿t、0.2672亿t、1.3783%和0.9576,均优于其他模型,证明该模型适用于建筑业碳排放量的预测。该研究成果为建筑业的低碳发展提供理论支持和技术参考。
-
关键词:
- 建筑业 /
- 碳排放 /
- 最大信息系数 /
- 改进互补集合经验模态分解 /
- 雾凇优化算法 /
- 深度混合核极限学习机
Abstract: As one of the important sources of global carbon emissions, the carbon emission prediction of the construction industry is crucial to promote the low-carbon transition and formulate effective carbon emission reduction policies. However, the existing carbon emission prediction models are limited in many aspects, especially in the accuracy of influencing factors selection, the integrity of data preprocessing, the complex dynamic changes of carbon emission data, the processing of nonlinear characteristics and so on. To solve these problems, this paper proposed a carbon emission prediction model for the construction industry based on maximum information coefficient (MIC) feature extraction, improved complementary ensemble empirical mode decomposition (ICEEMD), RIME optimization algorithm, and deep hybrid kernel extreme learning machine (DHKELM). First, according to the calculation method provided by the IPCC, this paper calculatesd the carbon emissions of China’s construction industry from 1992 to 2021, covering multiple factors of direct and indirect emissions. Combined with the STIRPAT model, 17 potential influencing factors were identified, including year-end total population, gross domestic product, construction area completed and energy mix. These factors fully reflected the driving mechanism of carbon emissions in the construction industry. Through grey correlation analysis and MIC method in two stages, this paper selected 12 key factors that had a significant impact on the carbon emissions of the construction industry. In the data preprocessing stage, the improved ICEEMD method was used to decompose the original carbon emission data, and several stationary sequences and one residual term were obtained. This decomposition process effectively reduced the noise in the data and enhanced the stationarity of the time series, thus providing more reliable data input for the subsequent modeling. Next, the RIME optimization algorithm was used to optimize the key parameters of the DHKELM model to further improve the model’s predictive power. DHKELM, as an effective deep learning algorithm, can adaptively capture the nonlinear characteristics of carbon emission data through the built-in hybrid kernel function. In the process of model construction and training, each decomposed sequence was input into the optimized DHKELM model for training and prediction. Finally, based on the forecast results of each decomposition sequence, the predicted value of carbon emissions of the construction industry as a whole was obtained. In order to evaluate the predictive performance of the model, the results of the model were compared with those of various benchmark models. The experimental results showed that the MIC-ICEEMD-RIME-DHKELM model was superior to other models in many performance indexes. Specifically, the model had a root mean square error of 0.2782 million tons, a mean absolute error of 0.2672 million tons, a mean absolute percentage error of 1.3783%, and an absolute correlation coefficient of 0.9576, showing its superior forecasting ability. Through the above analysis, the proposed MIC-ICEEMD-RIME-DHKELM model can effectively predict the carbon emission of the construction industry, and provide important theoretical support and practical reference for the carbon emission monitoring and policy formulation of the construction industry. -
能源种类 碳排放系数 能源种类 碳排放系数 原煤 0.7143 kg C/kg 燃料油 1.4286 kg C/kg 焦炭 0.9714 kg C/kg 石油沥青 1.3307 kg C/kg 原油 1.4286 kg C/kg 液化石油气 1.7143 kg C/kg 汽油 1.4714 kg C/kg 天然气 1.33 kg C/kg 煤油 1.4714 kg C/kg 热力 34.12 kg C/GJ 柴油 1.4571 kg C/kg 电力 0.345 kg C/(kW·h) 建筑材料种类 钢材 木材 水泥 平板玻璃 铝材 碳排放系数 1.789 kg C/kg -842.8 kg C/m3 0.815 kg C/kg 0.966 kg C/kg 2.6 kg C/kg 3 积极贪婪选择机制伪代码[28]
3. Pseudo-code of the hard-rime puncture mechanism
Initialize population R Get the current optimal agent and optimal fitness Whilet ≤ T Coefficient of adherence E = sqrt(t/T) Ifr2 < E Update rime location by the soft-rime search strategy End If Ifr3 < Normalize fitness of Si Cross updating between agents by the hard-rime puncture mechanism End If If F(Rinew ) < F(Ri ) Select the best solution over the inferior one using positive greedy selection End If t = t + 1 End while 4 建筑业碳排放影响因素
4. Factors influencing construction industry carbon emissions
结构 影响因素 序号 人口 年末总人口数 x1 人口密度 x2 城镇化率 x3 财富 国内生产总值 x4 第三产业增加值 x5 全社会固定资产投资 x6 居民人均可支配收入 x7 建筑业劳动生产率 x8 建筑业生产总值 x9 技术 建筑业房屋竣工面积 x10 单位GDP能源消耗 x11 一次能源生产总量 x12 建筑业企业从业人员 x13 能源结构 x14 能源强度 x15 能源加工转换效率 x16 投入产出率 x17 5 灰色关联分析排名及MIC系数
5. Grey relational analysis ranking and MIC coefficients
影响因素 灰色关联度 排名 MIC系数 建筑业劳动生产率 0.929 1 1 建筑业房屋竣工面积 0.923 2 1 居民人均可支配收入 0.918 3 1 能源强度 0.913 4 1 建筑业生产总值 0.906 5 1 人口密度 0.904 6 1 第三产业增加值 0.899 7 1 建筑业企业从业人员 0.86 8 1 一次能源生产总量 0.854 9 1 城镇化率 0.814 10 1 能源加工转换效率 0.79 11 1 年末总人口数 0.77 12 1 全社会固定资产投资 0.77 12 0.92 国内生产总值 0.766 14 0.5 能源结构 0.746 15 0.72 投入产出率 0.736 16 0.53 单位GDP能源消耗 0.682 17 0.53 6 各IMF序列的皮尔逊相关系数
6. Pearson correlation coefficient of each IMF series
IMF序列 imf1 imf2 imf3 res 皮尔逊相关系数 0.25864 0.293667 0.352066 0.925142 7 模型相关参数及对应数值
7. Model-related parameters and corresponding values
DHKELM模型基础参数 对应数值 RIME算法优化相关参数 对应数值 输入层神经元数 12 L2正则化参数 864.1517 输出层神经元数 1 顶层KELM惩罚参数 0.001 隐含层数量 3 核函数1的权重 0.365 激活函数 Sigmoid 隐含层节点数 9 核函数 RBF 99 poly 17 8 各模型预测性能评价指标对比
8. Comparison of prediction performance evaluation indicators for each model
模型 MAE/108 t RMSE/108 t MAPE/% R2 MIC-ICEEMD-RIME-DHKELM 0.2672 0.2782 1.3783 0.9576 ICEEMD-RIME-DHKELM 0.2134 0.4481 2.3100 0.8831 MIC-ICEEMD-WOA-DHKELM 0.3862 0.4191 1.9817 0.9038 MIC-ICEEMD-SSA-DHKELM 0.3903 0.4122 2.0167 0.9070 MIC-RIME-DHKELM 0.3483 0.3662 1.7800 0.9266 MIC-ICEEMD-DHKELM 0.4716 0.4960 2.4383 0.8654 MIC-ICEEMD-KELM 0.5378 0.5559 2.7800 0.8308 -
[1] LIU Y H,LI Y H,WANG W T. Challenges,opportunities and actions for china to achieve the targets of carbon peak and carbon neutrality[J]. China Population,Resources and Environment,2021,31(9):1-5. 刘燕华,李宇航,王文涛. 中国实现“双碳”目标的挑战、机遇与行动[J]. 中国人口·资源与环境,2021,31(9):1-5. [2] WEI G P,KANG Y,FAN H W,et al. Accounting and prediction on construction carbon emissions in heavy industry city[J]. Ecological Economy,2022,38(9):43-48. 魏光普,康瑜,范浩文,等. 重工业城市建筑业碳排放核算与预测研究[J]. 生态经济,2022,38(09):43-48. [3] VITO A,UMBERTO B. Green buildings and organizational changes in italian case studies[J]. Business Strategy and the Environment,2012,21(6):387-400. [4] XI Z,ZHENG L,LIN W M,et al. Analyzing carbon emissions embodied in construction services:a dynamic hybrid input-output model with structural decomposition analysis[J]. Energies,2019,12(8):1456. [5] WANG Z Q,LI K R,REN J G,et al. Influential factors and scenario forecast of carbon emissions of construction industry in shandong province based on LMDI-SD model[J]. Environmental Engineering,2023,41(10):108-116. 王志强,李可慧,任金哥,等. 基于LMDI-SD模型的山东省建筑业碳排放影响因素与情景预测[J]. 环境工程,2023,41(10):108-116. [6] LIU X H,LIAO C P,HUANG Y,et al. Analysis of factors affecting building carbon emissions and emission reduction measures in guangzhou based on STIRPAT model[J]. Renewable Energy Resources,2019,37(5):769-775. 刘兴华,廖翠萍,黄莹,等. 基于STIRPAT模型的广州市建筑碳排放影响因素及减排措施分析[J]. 可再生能源,2019,37(5):769-775. [7] NUŢĂ F M,NUŢĂ A C,ZAMFIR C G,et al. National carbon accounting—analyzing the impact of urbanization and energy-related factors upon cosub2/ sub emissions in central-eastern european countries by using machine learning algorithms and panel data analysis[J]. Energies,2021,14(10):2775-2775. [8] ZHANG J X,ZHANG H,WANG R,et al. Measuring the critical influence factors for predicting carbon dioxide emissions of expanding megacities by XGBoost[J]. Atmosphere,2022,13(4):599-599. [9] SHANG C J,CAI J,LIU Y R,et al. Study on analysis and forecast of carbon dioxide emissions accounting of construction industry in hainan province[J]. Environmental Engineering,2016,34(04):161-165. 尚春静,蔡晋,刘艳荣,等. 海南省建筑业碳排放核算分析及预测研究[J]. 环境工程,2016,34(04):161-165. [10] CHEN Y X,CHEN J G,WANG X Q,et al. Research on the prediction of carbon emission and emission reduction strategies in construction industry[J]. Construction Economy,2016,37(10):14-18. 陈雨欣,陈建国,王雪青,等. 建筑业碳排放预测与减排策略研究[J]. 建筑经济,2016,37(10):14-18. [11] CHANG L,MOHSIN M,HASNAOUI A,et al. Exploring carbon dioxide emissions forecasting in china:a policy-oriented perspective using projection pursuit regression and machine learning models[J]. Technological Forecasting Social Change,2023,197:122872. [12] ZHAO J H,LI J S,WANG P L,et al. A study on carbon peaking paths in henan,china based on lasso regression-BP neural network model[J]. Environmental Engineering,2022,40(12):151-156+164. 赵金辉,李景顺,王潘乐,等. 基于Lasso-BP神经网络模型的河南省碳达峰路径研究[J]. 环境工程,2022,40(12):151-156+164. [13] ZHANG X S,WEI Z Z,CHEN Z Z,et al. Prediction of industrial carbon emissions in Shaanxi province based on LASSO-GWO-KELM model[J]. Environmental Engineering,2023,41(10):141-149. 张新生,魏志臻,陈章政,等. 基于LASSO-GWO-KELM的工业碳排放预测方法研究[J]. 环境工程,2023,41(10):141-149. [14] CHEN Z,GUO Y L,GUO C,et al. Greenhouse gas prediction using whale optimization algorithm-deep extreme learning machine in Chengdu metro construction stage[J]. Tunnel Construction,2022,42(12):2048-2063. 陈政,郭亚林,郭春. 基于WOA-DELM的成都地铁建设阶段温室气体预测[J]. 隧道建设(中英文),2022,42(12):2048-2063. [15] ZHANG Z H,LIU R J. Carbon emissions in the construction sector based on input-output analyses[J]. Journal of Tsinghua University(Science and Technology),2013,53(1):53-57. 张智慧,刘睿劼. 基于投入产出分析的建筑业碳排放核算[J]. 清华大学学报(自然科学版),2013,53(1):53-57. [16] DANESHGAR S,AMERLINCK Y,AMARAL A,et al. An innovative model-based protocol for minimisation of greenhouse gas(GHG)emissions in WRRFs[J]. Chemical Engineering Journal,2024,483148327. [17] SIMON E,LEANDRO B,KUNIHISA M,et al. 2006 IPCC Guidelines for national greenhouse gas inventories volume 1:general guidance and reporting[J]. IGES,2006. [18] FENG B,WANG X Q,LIU B S. Provincial variation in energy efficiency across china’s construction industry with carbon emission considered[J]. Resources Science,2014,36(6):1256-1266. 冯博,王雪青,刘炳胜. 考虑碳排放的中国建筑业能源效率省际差异分析[J]. 资源科学,2014,36(06):1256-1266. [19] CHEN W L,YANG S Y,ZHANG X Z,et al. Embodied energy and carbon emissions of building materials in China[J]. Building and Environment,2022,207(PA):108434. [20] LI Z J. Study on the life cycle consumption of energy and resource of air conditioning in urban residential buildings in China[D]. Beijing:Tsinghua University,2007. 李兆坚. 我国城镇住宅空调生命周期能耗与资源消耗研究[D]. 北京:清华大学,2007. [21] NIU H L,LIU Z Y. Research on influencing factors of carbon emission of construction industry in China:based on dynamic spatial durbin panel model[J]. Ecological Economy,2017,33(8):74-80. 牛鸿蕾,刘志勇. 基于动态空间杜宾面板模型中国建筑业碳排放的影响因素研究[J]. 生态经济,2017,33(8):74-80. [22] SU Y X,CHEN X Z,YE Y Y,et al. The characteristics and mechanisms of carbon emissions from energy consumption in china using DMSP/OLS night light imageries[J]. Acta Geographica Sinica,2013,68(11):1513-1526. 苏泳娴,陈修治,叶玉瑶,等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526. [23] XU Y G,SONG J X. Carbon emission prediction of construction industry based on FCS-SVM[J]. Ecological Economy,2019,35(11):37-41. 徐勇戈,宋伟雪. 基于FCS-SVM的建筑业碳排放预测研究[J]. 生态经济,2019,35(11):37-41. [24] ZHANG X S,REN M Y,CHEN Z Z. Research on carbon emission prediction of construction industry based on CEEMD-SSA-ELM method[J]. Ecological Economy,2023,39(10):33-39+88. 张新生,任明月,陈章政. 基于CEEMD-SSA-ELM方法的建筑业碳排放预测研究[J]. 生态经济,2023,39(10):33-39+88. [25] DAVID N R,YAKIR A R,HILARY K F,et al. Detecting novel associations in large data sets[J]. Science,2011,334(6062):1518-1524. [26] MARCELO A C,GASTÓN S,MARÍA E T. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control,2014,1419-1429. [27] SU H,ZHAO D,HEIDARI A A,et al. RIME:A physics-based optimization[J]. Neurocomputing,2023,532183-532214. [28] YANG B,WANG J R,SU S,et al. Mismatch losses mitigation of PV-TEG hybrid system via improved RIME algorithm:design and hardware validation[J]. Journal of Cleaner Production,2024,434139957. [29] SUN W,HUANG C C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency[J]. Journal of Cleaner Production,2022,338:130414. [30] LIU J,XU H Y,PENG X Y,et al. Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine[J]. Reliability Engineering and System Safety,2023,234:109178. [31] WANG R,XU X C,LU J. Short-term wind power prediction based on SSA optimized variational mode decomposition and hybrid kernel extreme learning machine[J]. Information and Control,2023,52(4):444-454. 王瑞,徐新超,逯静. 基于麻雀搜索算法优化变分模态分解和混合核极限学习机的短期风电功率预测[J]. 信息与控制,2023,52(4):444-454. [32] WANG C,LIN H,PANG X H. Short-termphotovoltaic power combination prediction based on HPO-VMD and MISMA-DHKELM[J]. Acta Energiae Solaris Sinica,2023,44(12):65-73. 王超,蔺红,庞晓虹. 基于HPO-VMD和MISMA-DHKELM的短期光伏功率组合预测[J]. 太阳能学报,2023,44(12):65-73. [33] BRANT L,SIDNEY L. Age-structure,urbanization,and climate change in developed countries:revisiting STIRPAT for disaggregated population and consumption-related environmental impacts[J]. Population and Environment,2010,31(5):317-343. [34] JIA W,WEI S,JING R R,et al. Exploring the driving factors and their spatial effects on carbon emissions in the building sector[J]. Energies,2023,16(7):3094. [35] SUN Y H,HAO S Y,LONG X F. A study on the measurement and influencing factors of carbon emissions in China's construction sector[J]. Building and Environment,2023,229:109912. [36] LIU Y,WANG X,ZHU L. Analyzing carbon emissions in the Yangtze River Delta’s construction industry:spatiotemporal characteristics and influencing factors[J]. China Environmental Science,2023,43(12):6677-6688. 刘颖,王远,朱琳. 长三角地区建筑业碳排放变化的时空特征及影响因素分析[J]. 中国环境科学,2023,43(12):6677-6688. [37] XU T S,LI X W,DONG X. Spatial characteristics and influencing factors of carbon emission intensity of construction industry in China[J]. Science& Technology Review,2024,42(6):103-111. 徐水太,李晞薇,董信. 中国建筑业碳排放强度的空间特征与影响因素分析[J]. 科技导报,2024,42(6):103-111. -