Research on monitoring methods of vegetation carbon sink in natural ecosystems: a case study of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park
-
摘要: 实现碳达峰、碳中和是我国作出的重大战略决策,巩固和提升生态系统碳汇能力是实现“双碳”目标的重要行动。自然生态系统发挥着巨大的碳汇功能。传统野外调查碳汇监测方法存在人工成本大、工作效率低等问题。以长株潭绿心中央公园核心区为研究对象,提出了基于“国土三调”工作分类的自然生态系统分类方法,利用卫星遥感影像、降水、气温和DEM等基础数据,结合CASA模型与净生态系统生产力法,构建CASA_NEP模型,估算了2022年度核心区的净生态系统生产力(NEP),以此表征植被碳汇量,并分析了不同自然生态系统植被碳汇分布状况。结果表明:核心区年度植被碳汇量为9471.51 Mg C/a,单位面积植被碳汇量为0.73 Mg C/(hm2·a),不同生态系统类型的植被碳汇量相差较大,林地生态系统占核心区植被总碳汇量的98.28%,草地生态系统占1.64%,湿地生态系统仅占0.08%。该方法可行性高、可操作性强,极大地节约了监测成本,提高了监测效率,可为湖南省乃至全国生态系统植被碳汇监测提供科学参考。Abstract: China has made a major strategic decision to achieve the carbon peak and carbon neutrality goals, and consolidating and enhancing the ecosystem’s carbon sink capacity is an important action for realizing the goal. As a critical component of the global carbon cycle, the terrestrial ecosystem plays a huge role in the carbon sinks. The field investigation is a traditional method to monitor the carbon sink which has the problems of high labor cost and low work efficiency. In order to avoid and solve these problems effectively, this study took the core area of the Green Heart Central Park in the Changsha-Zhuzhou-Xiangtan urban agglomeration as the research object, and put forward a classification method of natural ecosystems, based on the classification framework of the Third National Land Resource Survey. By integrating satellite remote sensing imagery and some fundamental datasets, including precipitation, temperatures, and digital elevation models (DEM) and other basic data, a CASA_NEP model was constructed by combing the CASA model and the Net Ecosystem Productivity (NEP) approach, and this model was applied to estimate the NEP of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park in 2022,which served as a quantitative indicator of vegetation carbon sink capacity of the core area. Furthermore, the spatial distribution and variations in vegetation carbon sinks across the different types of natural ecosystems in the core area were analyzed. The results indicated that the total annual vegetation carbon sink in the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park in 2022 reached 9471.51 Mg C/a, and the average carbon sink per unit area of the core area was 0.73 Mg C/(hm2·a). Meanwhile, there was a significant difference of the vegetation carbon sink between the different ecosystem types in the core area, and forest ecosystem had the maximum of vegetation carbon sink, with a proportion of 98.28% of the total vegetation carbon sink of the core area, grassland ecosystem accounted for 1.64%, and wetland ecosystem accounted for only 0.08%. This method demonstrates high feasibility and operational efficiency which can offer substantial cost savings and improve the accuracy of carbon sink monitoring compared to traditional approaches. It can provide a scientific reference for large-scale vegetation carbon sink monitoring at a province level and even the country level.
-
1 自然生态系统植被碳汇监测分类
1. Classification of natural ecosystems in vegetation carbon sink monitoring
一级分类 二级分类 定义 对应“国土三调”地类编码[24] 耕地生态系统 水田 用于种植水稻、莲藕等水生农作物的耕地 0101 水浇地 指有水源保证和灌溉设施,在一般年景能正常灌溉,种植旱生农作物(含蔬菜)的耕地 0102 旱地 无灌溉设施,主要靠天然降水种植旱生农作物的耕地 0103 林地生态系统 果园 种植果树的园地 0201、0201K 茶园 种植茶树的园地 0202、0202K 其他园地 种植桑树、可可、咖啡、油棕、胡椒、药材等其他多年生作物的园地 0204、0204K 乔木林地 乔木郁闭度≥0.2的林地,不包括森林沼泽 0301、0301K 竹林地 生长竹类植物,郁闭度≥0.2的林地 0302、0302K 灌木林地 灌木覆盖度≥40%的林地,不包括灌丛沼泽 0305 其他林地 包括疏林地(树木郁闭度≥0.1、< 0.2的林地)、未成林地、迹地、苗圃等林地 0307、0307K 草地生态系统 天然牧草地 以天然草本植物为主,用于放牧或割草的草地,不包括沼泽草地 0401 人工牧草地 人工种植牧草的草地 0403 其他草地 树木郁闭度< 0.1,表层为土质,不用于放牧的草地 0404 湿地生态系统 森林沼泽 以乔木森林植物为优势群落的淡水沼泽 0304 灌丛沼泽 以灌丛植物为优势群落的淡水沼泽 0306 沼泽草地 以天然草本植物为主的沼泽化的低地草甸、高寒草甸 0402 沼泽地 经常积水或渍水,一般生长湿生植物的土地 1108 2 长株潭绿心中央公园核心区自然生态系统植被碳汇量
2. Vegetation carbon sinks of natural ecosystems in the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park
生态系统类型 面积/hm2 面积占比/% 植被碳汇量/(Mg C/a) 植被碳汇量占比/% 单位面积植被碳汇量/[Mg C/(hm²·a)] 林地生态系统 12571.13 96.92 9308.49 98.28 0.74 草地生态系统 380.44 2.93 155.23 1.64 0.41 湿地生态系统 19.75 0.15 7.79 0.08 0.39 合计 12971.32 100.00 9471.51 100.00 0.73 3 长株潭绿心中央公园核心区自然生态系统植被NPP和碳汇量空间分布
3. Spatial distribution of vegetation NPP and carbon sinks in natural ecosystems in the core area of Changsha-Zhuzhou-Xiangtan Greenheart Central Park
a—植被NPP b—植被碳汇量
-
[1] HUANG R Q. Incorporating carbon peak and carbon neutrality into the overall layout of ecological civilization construction[J]. China Ecological Civilization,2021(6):9-11. 黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[J]. 中国生态文明,2021(6):9-11. [2] KONG F J,YING L X,WEN W,et al. Exploring carbon sequestration and sink enhancement based on ecological restoration of territorial space[J]. Natural Resource Economics of China,2021,34(12):70-76. 孔凡婕,应凌霄,文雯,等. 基于国土空间生态修复的固碳增汇探讨[J]. 中国国土资源经济,2021,34(12):70-76. [3] ZHANG Y,LI X G. Carbon sink potential of Beijing’s forest under carbon peak and carbon neutrality[J]. Resources& Industries,2022,24(1):15-25. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析[J]. 资源与产业,2022,24(1):15-25. [4] POTTER C,KLOOSTER S,MYNENI R,et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998[J]. Global and Planetary Change,2003,39(3/4):201-213. [5] LI J B,CHEN H M,ZHANG C L,et al. Spatiotemporal evolution characteristics of carbon sources and carbon sinks and carbon balance zoning in the Yangtze River Delta Region[J]. Environmental Science,2024,45(7):4090-4100. 李建豹,陈红梅,张彩莉,等. 长三角地区碳源碳汇时空演化特征及碳平衡分区[J]. 环境科学,2024,45(7):4090-4100. [6] YUAN Y. Carbon sink change in Datong coalfield based on hyperspectral image of Zhuhai No.1[J]. Bulletin of Surveying and Mapping,2023(12):127-131. 袁媛. 基于珠海一号高光谱影像的大同煤田区碳汇变化[J]. 测绘通报,2023(12):127-131. [7] CAI W X,XU L,LI M X,et al. Imbalance of inter-provincial forest carbon sequestration rate(2010-2060)in China and its regulation strategy[J]. Acta Geographica Sinica,2022,77(7):1808-1820. 蔡伟祥,徐丽,李明旭,等. 2010-2060年中国森林生态系统固碳速率省际不平衡性及调控策略[J]. 地理学报,2022,77(7):1808-1820. [8] LIU W L,JIANG L L,LIU B,et al. Spatio-temporal evolution characteristics and driving factors analysis of vegetation carbon sources/sinks in China[J]. Acta Ecologica Sinica,2024,44(4):1456-1467. 刘文利,姜亮亮,刘冰,等. 中国植被碳源/汇时空演变特征及其驱动因素[J]. 生态学报,2024,44(4):1456-1467. [9] QIU Z X. Measurement and statistics of land-surface forest vegetation carbon sink in China[D]. Beijing:Beijing Forestry University,2019. 邱梓轩. 中国陆表森林植被碳汇测计方法与应用研究[D]. 北京:北京林业大学,2019. [10] ZHANG J P,LIU C L,HAO H G,et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences,2015,24(1):8-13. 张继平,刘春兰,郝海广,等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报,2015,24(1):8-13. [11] XU S J,XU Z C. Carbon sequestration function of vegetation in wetlands in Guangzhou city[J]. Wetland Science,2015,13(2):190-196. 徐松浚,徐正春. 广州市湿地植被碳汇功能研究[J]. 湿地科学,2015,13(2):190-196. [12] LIU K,ZHANG H,KONG L H,et al. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica,2023,43(10):4294-4307. 刘坤,张慧,孔令辉,等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报,2023,43(10):4294-4307. [13] PIAO S L,HE Y,WANG X H,et al. Estimation of China’s terrestrial ecosystem carbon sink:methods,progress and prospects[J]. Science China Earth Sciences,2022,52(6):1010-1020. 朴世龙,何悦,王旭辉,等. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学,2022,52(6):1010-1020. [14] FANG J Y,GUO Z D,PIAO S L,et al. Estimation of China's terrestrial vegetation carbon sink from 1981 to 2000[J]. Scientia Sinica(Terrae),2007(6):804-812. 方精云,郭兆迪,朴世龙,等. 1981~2000年中国陆地植被碳汇的估算[J]. 中国科学,2007(6):804-812. [15] HIRANO A,TSUCHIDA M,ISHIBASHI M,et al. Carbon sink and storage capacity of forest ecosystems in Oze,Central Japan[C]// Greenhouse Gas Control Technologies-6th International Conference,2003,2:1843-1846. [16] FU W,LI L,LUO M C,et al. Spatial spillover effects and influencing factors of forest carbon sink in China from provincial perspective[J]. Acta Ecologica Sinica,2023,43(10):4074-4085. 付伟,李龙,罗明灿,等. 省域视角下中国森林碳汇空间外溢效应与影响因素[J]. 生态学报,2023,43(10):4074-4085. [17] LU Y. The estimation for wetland carbon source/sink based on process model[D]. Shanghai:East China Normal University,2014. 陆颖. 基于过程模型的湿地碳源/汇动态估算[D]. 上海:华东师范大学,2014. [18] OUYANG Z Y,ZHANG L,WU B F,et al. An ecosystem classification system based on remote sensor information in China[J]. Acta Ecologica Sinica,2015,35(2):219-226. 欧阳志云,张路,吴炳方,等. 基于遥感技术的全国生态系统分类体系[J]. 生态学报,2015,35(2):219-226. [19] WANG J,WANG W,QI Y,et al. Classification system and spatio-temporal distribution of ecological land in China in the period of 1996-2012[J]. Geographical Research,2017,36(3):453-470. 王静,王雯,祁元,等. 中国生态用地分类体系及其1996-2012年时空分布[J]. 地理研究,2017,36(3):453-470. [20] LA NOTTE A,D'AMATO D,MKINEN H,et al. Ecosystem services classification:A systems ecology perspective of the cascade framework[J]. Ecological Indicators,2017,74:392-402. [21] LIU Y Q,LU C H,FU B J,et al. Terrestrial ecosystem classification and its spatiotemporal changes in China during last 20 years[J]. Acta Ecologica Sinica,2021,41(10):3975-3987. 刘亚群,吕昌河,傅伯杰,等. 中国陆地生态系统分类识别及其近20年的时空变化[J]. 生态学报,2021,41(10):3975-3987. [22] TANG X L,ZHAO X,BAI Y F,et al. Carbon pools in china's terrestrial ecosystems:New estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4021-4026. [23] ZHAO N,ZHOU L,ZHUANG J,et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica,2021,41(19):7648-7658. 赵宁,周蕾,庄杰,等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报,2021,41(19):7648-7658. [24] WANG Y J,DI Z Z. On land classification conversion between the second and the third national land surveying[J]. Standardization of Surveying and Mapping,2019,35(2):33-38. 王玉杰,邸志众.“二调”与“三调”土地分类对照转换研究[J]. 测绘标准化,2019,35(2):33-38. [25] PIAO S L,YUE C,DING J Z,et al. Perspectives on the role of terrestrial ecosystems in the“carbon neutrality” strategy[J]. Science China Earth Sciences,2022,52(7):1419-1426. 朴世龙,岳超,丁金枝,等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学:地球科学,2022,52(7):1419-1426. [26] WANG Z. Spatial and temporal dynamics of forest carbon storage and influencing factors based on CASA model in Hangzhou[D]. Hangzhou:Zhejiang A&F University,2021. 王智. 基于CASA模型的杭州市森林碳储量时空变化及影响因子研究[D]. 杭州:浙江农林大学,2021. [27] GENG D,LIANG L,HUANG T,et al. Estimation of urban scale NPP by using improved CASA model:taking Xuzhou city as an example[J]. Bulletin of Surveying and Mapping,2021(1):78-83. 耿笛,梁亮,黄婷,等. 利用改进的CASA 模型估算城市尺度NPP:以徐州城区为例[J]. 测绘通报,2021(1):78-83. [28] SHI F Q. Introduction to the Trial Specifications for the Accounting of Total Value of Ecosystem Products[J]. China Statistics,2023(11):45-47. 施发启.《生态产品总值核算规范(试行)》简介[J]. 中国统计,2023(11):45-47. [29] ZHU W Q,PAN Y Z,ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology,2007(3):413-424. 朱文泉,潘耀忠,张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报,2007(3):413-424. [30] XIAO H J. Remote Sensing Monitoring of Ecological Drought in Hunan Province,South China[D]. Nanjing:Nanjing University,2019. 肖辉军. 湖南省生态干旱遥感监测研究[D]. 南京:南京大学,2019. [31] LIU X Q,FENG Y H,HU T Y,et al. Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests[J]. Science Advances,2024,10(20):1-14. [32] WANG T H. Temporal and spatial changes of carbon profits and losses in Chang-Zhu-Tan Metropolitan Area and prediction of carbon neutralization under multiple scenarios[D]. Xiangtan:Hunan University of Science and Technology,2023. 王天浩. 长株潭都市圈碳盈亏时空变化及多情景碳中和预测[D]. 湘潭:湖南科技大学,2023. -