中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然生态系统植被碳汇监测方法研究:以长株潭绿心中央公园核心区为例

肖海 全思湘 王珍香 廖莎

肖海,全思湘,王珍香,等.自然生态系统植被碳汇监测方法研究:以长株潭绿心中央公园核心区为例[J].环境工程,2025,43(4):59-66. doi: 10.13205/j.hjgc.202504006
引用本文: 肖海,全思湘,王珍香,等.自然生态系统植被碳汇监测方法研究:以长株潭绿心中央公园核心区为例[J].环境工程,2025,43(4):59-66. doi: 10.13205/j.hjgc.202504006
XIAO H,QUAN S X,WANG Z X,et al.Research on monitoring methods of vegetation carbon sink in natural ecosystems: a case study of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park[J].Environmental Engineering,2025,43(4):59-66. doi: 10.13205/j.hjgc.202504006
Citation: XIAO H,QUAN S X,WANG Z X,et al.Research on monitoring methods of vegetation carbon sink in natural ecosystems: a case study of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park[J].Environmental Engineering,2025,43(4):59-66. doi: 10.13205/j.hjgc.202504006

自然生态系统植被碳汇监测方法研究:以长株潭绿心中央公园核心区为例

doi: 10.13205/j.hjgc.202504006
基金项目: 

湖南省自然资源领域推进碳达峰碳中和重大技术研究(湘自科〔2022〕5号);基于遥感技术的生态系统碳汇监测核算模型研究(2023JJ60565)

详细信息
    作者简介:

    肖海(1981-),男,高级工程师,从事自然生态系统碳汇监测与遥感数据应用。46675476@qq.com

    通讯作者:

    全思湘(1985-),男,硕士,高级工程师,从事自然生态系统碳汇监测、自然资源调查监测、政策研究及新技术探索工作。279934403@qq.com

Research on monitoring methods of vegetation carbon sink in natural ecosystems: a case study of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park

  • 摘要: 实现碳达峰、碳中和是我国作出的重大战略决策,巩固和提升生态系统碳汇能力是实现“双碳”目标的重要行动。自然生态系统发挥着巨大的碳汇功能。传统野外调查碳汇监测方法存在人工成本大、工作效率低等问题。以长株潭绿心中央公园核心区为研究对象,提出了基于“国土三调”工作分类的自然生态系统分类方法,利用卫星遥感影像、降水、气温和DEM等基础数据,结合CASA模型与净生态系统生产力法,构建CASA_NEP模型,估算了2022年度核心区的净生态系统生产力(NEP),以此表征植被碳汇量,并分析了不同自然生态系统植被碳汇分布状况。结果表明:核心区年度植被碳汇量为9471.51 Mg C/a,单位面积植被碳汇量为0.73 Mg C/(hm2·a),不同生态系统类型的植被碳汇量相差较大,林地生态系统占核心区植被总碳汇量的98.28%,草地生态系统占1.64%,湿地生态系统仅占0.08%。该方法可行性高、可操作性强,极大地节约了监测成本,提高了监测效率,可为湖南省乃至全国生态系统植被碳汇监测提供科学参考。
  • 1  长株潭绿心中央公园核心区区位

    1.  Location of the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park

    2  CASA_NEP模型总体框架

    2.  The overall framework of the CASA_NEP model

    4  长株潭绿心中央公园核心区林地生态系统植被碳汇量及单位面积碳汇量

    4.  Vegetation carbon sinks and carbon sink per unit area of the forest ecosystem in the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park

    1  自然生态系统植被碳汇监测分类

    1.   Classification of natural ecosystems in vegetation carbon sink monitoring

    一级分类二级分类定义对应“国土三调”地类编码[24]
    耕地生态系统水田用于种植水稻、莲藕等水生农作物的耕地0101
    水浇地指有水源保证和灌溉设施,在一般年景能正常灌溉,种植旱生农作物(含蔬菜)的耕地0102
    旱地无灌溉设施,主要靠天然降水种植旱生农作物的耕地0103
    林地生态系统果园种植果树的园地0201、0201K
    茶园种植茶树的园地0202、0202K
    其他园地种植桑树、可可、咖啡、油棕、胡椒、药材等其他多年生作物的园地0204、0204K
    乔木林地乔木郁闭度≥0.2的林地,不包括森林沼泽0301、0301K
    竹林地生长竹类植物,郁闭度≥0.2的林地0302、0302K
    灌木林地灌木覆盖度≥40%的林地,不包括灌丛沼泽0305
    其他林地包括疏林地(树木郁闭度≥0.1、< 0.2的林地)、未成林地、迹地、苗圃等林地0307、0307K
    草地生态系统天然牧草地以天然草本植物为主,用于放牧或割草的草地,不包括沼泽草地0401
    人工牧草地人工种植牧草的草地0403
    其他草地树木郁闭度< 0.1,表层为土质,不用于放牧的草地0404
    湿地生态系统森林沼泽以乔木森林植物为优势群落的淡水沼泽0304
    灌丛沼泽以灌丛植物为优势群落的淡水沼泽0306
    沼泽草地以天然草本植物为主的沼泽化的低地草甸、高寒草甸0402
    沼泽地经常积水或渍水,一般生长湿生植物的土地1108
    下载: 导出CSV

    2  长株潭绿心中央公园核心区自然生态系统植被碳汇量

    2.   Vegetation carbon sinks of natural ecosystems in the core area of the Changsha-Zhuzhou-Xiangtan Greenheart Central Park

    生态系统类型面积/hm2面积占比/%植被碳汇量/(Mg C/a)植被碳汇量占比/%单位面积植被碳汇量/[Mg C/(hm²·a)]
    林地生态系统12571.1396.929308.4998.280.74
    草地生态系统380.442.93155.231.640.41
    湿地生态系统19.750.157.790.080.39
    合计12971.32100.009471.51100.000.73
    下载: 导出CSV

    3  长株潭绿心中央公园核心区自然生态系统植被NPP和碳汇量空间分布

    3.   Spatial distribution of vegetation NPP and carbon sinks in natural ecosystems in the core area of Changsha-Zhuzhou-Xiangtan Greenheart Central Park

    a—植被NPP

    b—植被碳汇量
    下载: 导出CSV
  • [1] HUANG R Q. Incorporating carbon peak and carbon neutrality into the overall layout of ecological civilization construction[J]. China Ecological Civilization,2021(6):9-11. 黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[J]. 中国生态文明,2021(6):9-11.
    [2] KONG F J,YING L X,WEN W,et al. Exploring carbon sequestration and sink enhancement based on ecological restoration of territorial space[J]. Natural Resource Economics of China,2021,34(12):70-76. 孔凡婕,应凌霄,文雯,等. 基于国土空间生态修复的固碳增汇探讨[J]. 中国国土资源经济,2021,34(12):70-76.
    [3] ZHANG Y,LI X G. Carbon sink potential of Beijing’s forest under carbon peak and carbon neutrality[J]. Resources& Industries,2022,24(1):15-25. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析[J]. 资源与产业,2022,24(1):15-25.
    [4] POTTER C,KLOOSTER S,MYNENI R,et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998[J]. Global and Planetary Change,2003,39(3/4):201-213.
    [5] LI J B,CHEN H M,ZHANG C L,et al. Spatiotemporal evolution characteristics of carbon sources and carbon sinks and carbon balance zoning in the Yangtze River Delta Region[J]. Environmental Science,2024,45(7):4090-4100. 李建豹,陈红梅,张彩莉,等. 长三角地区碳源碳汇时空演化特征及碳平衡分区[J]. 环境科学,2024,45(7):4090-4100.
    [6] YUAN Y. Carbon sink change in Datong coalfield based on hyperspectral image of Zhuhai No.1[J]. Bulletin of Surveying and Mapping,2023(12):127-131. 袁媛. 基于珠海一号高光谱影像的大同煤田区碳汇变化[J]. 测绘通报,2023(12):127-131.
    [7] CAI W X,XU L,LI M X,et al. Imbalance of inter-provincial forest carbon sequestration rate(2010-2060)in China and its regulation strategy[J]. Acta Geographica Sinica,2022,77(7):1808-1820. 蔡伟祥,徐丽,李明旭,等. 2010-2060年中国森林生态系统固碳速率省际不平衡性及调控策略[J]. 地理学报,2022,77(7):1808-1820.
    [8] LIU W L,JIANG L L,LIU B,et al. Spatio-temporal evolution characteristics and driving factors analysis of vegetation carbon sources/sinks in China[J]. Acta Ecologica Sinica,2024,44(4):1456-1467. 刘文利,姜亮亮,刘冰,等. 中国植被碳源/汇时空演变特征及其驱动因素[J]. 生态学报,2024,44(4):1456-1467.
    [9] QIU Z X. Measurement and statistics of land-surface forest vegetation carbon sink in China[D]. Beijing:Beijing Forestry University,2019. 邱梓轩. 中国陆表森林植被碳汇测计方法与应用研究[D]. 北京:北京林业大学,2019.
    [10] ZHANG J P,LIU C L,HAO H G,et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences,2015,24(1):8-13. 张继平,刘春兰,郝海广,等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报,2015,24(1):8-13.
    [11] XU S J,XU Z C. Carbon sequestration function of vegetation in wetlands in Guangzhou city[J]. Wetland Science,2015,13(2):190-196. 徐松浚,徐正春. 广州市湿地植被碳汇功能研究[J]. 湿地科学,2015,13(2):190-196.
    [12] LIU K,ZHANG H,KONG L H,et al. An overview of terrestrial ecosystem carbon sink assessment methods towards achieving carbon neutrality in China[J]. Acta Ecologica Sinica,2023,43(10):4294-4307. 刘坤,张慧,孔令辉,等. 陆地生态系统碳汇评估方法研究进展[J]. 生态学报,2023,43(10):4294-4307.
    [13] PIAO S L,HE Y,WANG X H,et al. Estimation of China’s terrestrial ecosystem carbon sink:methods,progress and prospects[J]. Science China Earth Sciences,2022,52(6):1010-1020. 朴世龙,何悦,王旭辉,等. 中国陆地生态系统碳汇估算:方法、进展、展望[J]. 中国科学:地球科学,2022,52(6):1010-1020.
    [14] FANG J Y,GUO Z D,PIAO S L,et al. Estimation of China's terrestrial vegetation carbon sink from 1981 to 2000[J]. Scientia Sinica(Terrae),2007(6):804-812. 方精云,郭兆迪,朴世龙,等. 1981~2000年中国陆地植被碳汇的估算[J]. 中国科学,2007(6):804-812.
    [15] HIRANO A,TSUCHIDA M,ISHIBASHI M,et al. Carbon sink and storage capacity of forest ecosystems in Oze,Central Japan[C]// Greenhouse Gas Control Technologies-6th International Conference,2003,2:1843-1846.
    [16] FU W,LI L,LUO M C,et al. Spatial spillover effects and influencing factors of forest carbon sink in China from provincial perspective[J]. Acta Ecologica Sinica,2023,43(10):4074-4085. 付伟,李龙,罗明灿,等. 省域视角下中国森林碳汇空间外溢效应与影响因素[J]. 生态学报,2023,43(10):4074-4085.
    [17] LU Y. The estimation for wetland carbon source/sink based on process model[D]. Shanghai:East China Normal University,2014. 陆颖. 基于过程模型的湿地碳源/汇动态估算[D]. 上海:华东师范大学,2014.
    [18] OUYANG Z Y,ZHANG L,WU B F,et al. An ecosystem classification system based on remote sensor information in China[J]. Acta Ecologica Sinica,2015,35(2):219-226. 欧阳志云,张路,吴炳方,等. 基于遥感技术的全国生态系统分类体系[J]. 生态学报,2015,35(2):219-226.
    [19] WANG J,WANG W,QI Y,et al. Classification system and spatio-temporal distribution of ecological land in China in the period of 1996-2012[J]. Geographical Research,2017,36(3):453-470. 王静,王雯,祁元,等. 中国生态用地分类体系及其1996-2012年时空分布[J]. 地理研究,2017,36(3):453-470.
    [20] LA NOTTE A,D'AMATO D,MKINEN H,et al. Ecosystem services classification:A systems ecology perspective of the cascade framework[J]. Ecological Indicators,2017,74:392-402.
    [21] LIU Y Q,LU C H,FU B J,et al. Terrestrial ecosystem classification and its spatiotemporal changes in China during last 20 years[J]. Acta Ecologica Sinica,2021,41(10):3975-3987. 刘亚群,吕昌河,傅伯杰,等. 中国陆地生态系统分类识别及其近20年的时空变化[J]. 生态学报,2021,41(10):3975-3987.
    [22] TANG X L,ZHAO X,BAI Y F,et al. Carbon pools in china's terrestrial ecosystems:New estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4021-4026.
    [23] ZHAO N,ZHOU L,ZHUANG J,et al. Integration analysis of the carbon sources and sinks in terrestrial ecosystems,China[J]. Acta Ecologica Sinica,2021,41(19):7648-7658. 赵宁,周蕾,庄杰,等. 中国陆地生态系统碳源/汇整合分析[J]. 生态学报,2021,41(19):7648-7658.
    [24] WANG Y J,DI Z Z. On land classification conversion between the second and the third national land surveying[J]. Standardization of Surveying and Mapping,2019,35(2):33-38. 王玉杰,邸志众.“二调”与“三调”土地分类对照转换研究[J]. 测绘标准化,2019,35(2):33-38.
    [25] PIAO S L,YUE C,DING J Z,et al. Perspectives on the role of terrestrial ecosystems in the“carbon neutrality” strategy[J]. Science China Earth Sciences,2022,52(7):1419-1426. 朴世龙,岳超,丁金枝,等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学:地球科学,2022,52(7):1419-1426.
    [26] WANG Z. Spatial and temporal dynamics of forest carbon storage and influencing factors based on CASA model in Hangzhou[D]. Hangzhou:Zhejiang A&F University,2021. 王智. 基于CASA模型的杭州市森林碳储量时空变化及影响因子研究[D]. 杭州:浙江农林大学,2021.
    [27] GENG D,LIANG L,HUANG T,et al. Estimation of urban scale NPP by using improved CASA model:taking Xuzhou city as an example[J]. Bulletin of Surveying and Mapping,2021(1):78-83. 耿笛,梁亮,黄婷,等. 利用改进的CASA 模型估算城市尺度NPP:以徐州城区为例[J]. 测绘通报,2021(1):78-83.
    [28] SHI F Q. Introduction to the Trial Specifications for the Accounting of Total Value of Ecosystem Products[J]. China Statistics,2023(11):45-47. 施发启.《生态产品总值核算规范(试行)》简介[J]. 中国统计,2023(11):45-47.
    [29] ZHU W Q,PAN Y Z,ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology,2007(3):413-424. 朱文泉,潘耀忠,张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报,2007(3):413-424.
    [30] XIAO H J. Remote Sensing Monitoring of Ecological Drought in Hunan Province,South China[D]. Nanjing:Nanjing University,2019. 肖辉军. 湖南省生态干旱遥感监测研究[D]. 南京:南京大学,2019.
    [31] LIU X Q,FENG Y H,HU T Y,et al. Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests[J]. Science Advances,2024,10(20):1-14.
    [32] WANG T H. Temporal and spatial changes of carbon profits and losses in Chang-Zhu-Tan Metropolitan Area and prediction of carbon neutralization under multiple scenarios[D]. Xiangtan:Hunan University of Science and Technology,2023. 王天浩. 长株潭都市圈碳盈亏时空变化及多情景碳中和预测[D]. 湘潭:湖南科技大学,2023.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 录用日期:  2024-08-09
  • 修回日期:  2024-07-23
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回