Identification and monitoring of landuse activities in contaminated plots based on multi-modal data: a case study oncontaminated plots in Soil Pollution Risk Control and Remediation List of Construction Land in Chongqing
-
摘要: 随着工业化和城市化的推进,污染地块违规利用活动问题日益严峻,迫切需要开展污染地块利用活动的识别与监测研究,以满足环境管理和资源保护的需求。针对污染地块利用活动难以识别与监测的技术痛点,基于遥感图像、监测数据等多模态数据,建立了污染地块利用活动识别与监测技术体系。以《重庆市建设用地土壤污染风险管控和修复名录》中的污染地块为例,利用多模态数据识别与监测了70块污染地块,总体分类精度为96%。整体上,种植活动占据主导地位:共有23块污染地块存在利用活动,其中18块存在种植活动,占比为78.26%。各区县之间污染地块利用活动数量、利用活动点数和利用活动面积差异大。空间上,污染地块利用活动呈聚集分布,高密度核心区位于沙坪坝区,较高核心区位于大渡口区和九龙坡区,存在鲜明的“核心-边缘”结构。该研究结果有助于制定更科学的土壤风险管控措施和保护与修复方案,降低土壤污染对环境和人类健康的潜在风险。Abstract: With the advancement of industrialization and urbanization, the illegal use of contaminated land has become increasingly serious. There is an urgent need to carry out identification and monitoring research on the use of contaminated land to meet the requirements of environmental management and resource protection. In view of the technical challenge of difficult identification and monitoring of land-use activities in contaminated plots, a technical system for identifying and monitoring of such activities was established, based on multi-modal data such as remote sensing images and monitoring data. Taking the contaminated plots in the Chongqing Construction Land Soil Pollution Risk Management and Remediation List as an example, multi-modal data were used to identify and monitor 70 contaminated plots, achieving an overall classification accuracy of 96%. On the whole, planting activities dominated. There were 23 contaminated plots with land-use activities, among which 18 plots had planting activities, accounting for 78.26%. The number of land-use activities, land-use activity points, and land-use activity areas in contaminated plots varied greatly among districts and counties. Spatially, the land-use activities of contaminated land exhibited a clustered distribution. The high-density core area was located in Shapingba District, and the higher-density core areas were located in Dadukou District and Jiulongpo District, showing an obvious "core-to-edge" structure. The research results can help formulate scientific soil risk management and control measures, develop protection and restoration plans, and reduce the potential risks of soil pollution to the environment and human health.
-
1 污染地块利用活动识别解译标志
1. Identification and interpretation of contaminated land-use activities
开发活动迹象类型 活动描述 影像色调 实例 无利用活动 无利用活动 地块不存在任何利用活动 一般为土黄色、绿色,少量的黑色、白色 存在利用活动 种植 指在土壤污染地块中进行植物栽培的人类建设活动用地 一般为灰色、绿色、部分为白色 开挖 将污染地块中的土和岩石进行松动、破碎、挖掘并运出的人类建设活动用地 建设 指在污染地块中建造建筑物、构筑物等的人类建设活动用地,包括城乡住宅和公共设施用地,工矿用地,能源、交通、水利、通信等基础设施用地 2 多模态数据
2. Multi-modal data table
数据类型 数据名称 数据来源 主要用途 遥感影像数据 高分一号高分六号北京一号 中国国家航天局 作为识别与监测的基础数据,用于污染地块的位置和分布等 地理信息系统(GIS)数据 污染地块矢量数据 全国建设用地土壤环境管理信息系统 用于在GIS系统中展示和管理污染地块的详细信息,包括位置、面积、属性信息等 文本数据 地块调查报告 全国建设用地土壤环境管理信息系统 根据地块调查报告,提供关于地块的详细信息,包括地块的位置、面积、污染程度以及污染源等;根据地块风险管控报告,制定和更新风险管控策略;根据地块修复评估报告,评估修复措施的效果,并提供改进建议 风险管控报告 修复效果评估报告 其他数据 无人机拍摄数据区县部门数据奥维地图数据 实时收集 提供污染地块的实时监测数据;提供区县级别的土壤环境信息,包括污染地块的数量、分布、严重程度等;提供地理位置信息,帮助识别和监测污染地块 3 各区县污染地块利用活动情况统计
3. Land-use activities in contaminated plots in each district and county
区县 存在利用活动污染地块数量 存在利用活动类型 识别利用面积/㎡ 监测利用面积/㎡ 巴南区 2 种植 53969.6 50447.32 北碚区 1 种植 182.61 162.39 大渡口区 3 种植 32190.63 15953.81 九龙坡区 1 种植 3528.42 5615.62 綦江区 2 种植 4928.67 13497.06 沙坪坝区 1 建设 6600.88 6630.57 沙坪坝区 1 经营活动(停车场) 13440.99 25027.48 沙坪坝区 5 种植 54189.85 57639.45 渝北区 2 种植 32330.73 37,204.62 忠县 1 种植 25590.43 19885.79 南岸区 1 种植 542.67 769.35 万盛经开区 1 经营活动(生产) 1938.88 1938.88 江津区 1 经营活动(物流园) 81411.51 81411.51 永川区 1 养殖(猪) 0 258.92 总计 23 种植 310845.87 279238.15 -
[1] ZHANG L K,LI H P,HUANG X M,et al. Spatial distribution and sources of heavy metals in soils around an aluminum plant in Baotou[J]. Environmental Science,2016,37(3):1139-1146. 刘增俊,许贺峰,樊艳玲,等. 污染地块修复与风险管控后期管理体系初探[J]. 土壤,2023,55(1):1-10. [2] XU B X,PENG Y X,FU S. Organic contamination characteristics and ecological risk assessment of soils in decommissioned chemical industrial sites[J]. Environmental Engineering,2023,41(S2):742-746. 徐炳先,彭雨欣,付帅. 退役化工场地土壤有机污染特征及生态风险评价[J]. 环境工程,2023,41(增刊2):742-746. [3] JIANG L,LIANG J,ZHONG M S,et al. Risk management challenges and responses for complex contaminated sites[J]. Research of Environmental Sciences,2021,34(2):458-467. 姜林,梁竞,钟茂生,等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究,2021,34(2):458-467. [4] ANUPRIYA K. Soil pollution[J]. Journal of Pollution Effects& Control,2021,9(2). [5] WANG S T,WU X Y,WANG W,et al. Risk assessment of soil pollution before and after safe utilization of blast furnace lead smelting slag disposal site[J]. Environmental Engineering,2023,41(S2):734-737,682. 王舒婷,吴学勇,王薇,等. 鼓风炉铅冶炼渣清理场地安全利用前后土壤污染风险评价研究[J]. 环境工程,2023,41(增刊2):734-737,682. [6] LI C,XU H H,GAO F Y. Investigation and study on heavy metal contamination in soils of recycling enterprises of renewable resources[J]. Environmental Engineering,2023,41(S2):1190-1195. 李超,许欢欢,高芳莹. 再生资源回收企业土壤重金属污染状况调查研究[J]. 环境工程,2023,41(增刊2):1190-1195. [7] HUANG S H,PU L J,XIE X F,et al. Research progress and prospects of soil sampling design for digital soil mapping[J]. Acta Pedologica Sinica,2020,57(2):259-272. 黄思华,濮励杰,解雪峰,等. 面向数字土壤制图的土壤采样设计研究进展与展望[J]. 土壤学报,2020,57(2):259-272. [8] GUO L,LINDERMAN M,SHI T,et al. Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling[J]. Remote Sensing,2018,10(6):888. [9] XIAO H X,PU S Y,HE F K,et al. Research progress on application of remote sensing technology in soil pollution[J]. Earth and Environment,2020,48(5):622-630. 肖胡萱,蒲生彦,何发坤,等. 遥感技术在土壤污染中的应用研究进展[J]. 地球与环境,2020,48(5):622-630. [10] SONG W,CHENG S P,CHI X J,et al. Research progress on remote sensing monitoring of heavy metal contaminated soil remediation[J]. Multipurpose Utilization of Mineral Resources,2021(4):21-28. 宋文,成少平,迟晓杰,等. 重金属污染土壤修复遥感监测研究进展[J]. 矿产综合利用,2021(4):21-28. [11] CHEN Y,LIU Y,LIU Y,et al. Mapping of Cu and Pb contaminations in soil using combined geochemistry,topography,and remote sensing:a case study in the Le'an River floodplain,China[J]. International Journal of Environmental Research and Public Health,2012,9(5):1874-1886. [12] LI H,GU H. HAN Y.et al. Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine[J]. International Journal of Remote Sensing,2010,31(6):1453-1470. [13] FENG K Y,MA L X,YU D S,et al. Experimental study on soil erosion under different surface cover conditions based on ground-based LiDAR monitoring[J]. Soil,2022,54(4):856-864. 冯凯月,马利霞,于东升,等. 基于地基激光雷达监测不同地表覆盖条件的土壤侵蚀试验研究[J]. 土壤,2022,54(4):856-864. [14] LÜ Y,LI Z Q,XIE J F,et al. Monitoring of distributed point pollution sources based on LiDAR scanning observation[J]. China Environmental Science,2017,37(11):4078-4084. 吕阳,李正强,谢剑锋,等. 基于激光雷达扫描观测的散布点污染源监测[J]. 中国环境科学,2017,37(11):4078-4084. [15] SAHA A,GUPTA B S,PATIDAR S,et al. Optimal GIS interpolation techniques and multivariate statistical approach to study the soil-trace metal(loid)s distribution patterns in the agricultural surface soil of Matehuala,Mexico[J]. Journal of Hazardous Materials Advances,2023,9:100243. [16] HOU D,O'CONNOR D,NATHANAIL P,et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination:A critical review[J]. Environmental Pollution,2017,231:1188-1200. [17] ZHANG K K,HE J,ZHONG Y X,et al. Source apportionment of soil heavy metals around a copper-silver mining area in Ningxia based on GIS[J]. Environmental Science,2022,43(11):5192-5204. 张扣扣,贺婧,钟艳霞,等. 基于GIS对宁夏某铜银矿区周边土壤重金属来源解析[J]. 环境科学,2022,43(11):5192-5204. [18] VERSTRAETE S,VAN Meirvenne M. A multi-stage sampling strategy for the delineation of soil pollution in a contaminated brownfield[J]. Environmental Pollution,2008,154(2):184-191. [19] SONG C Y,QU X S,HU G C,et al. Remote sensing identification of mature crops based on NDVI-NSSI space and HSV transformation[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):193-200. 宋承运,曲雪杉,胡光成,等. 基于NDVI-NSSI空间与HSV变换的成熟期农作物遥感识别[J]. 农业机械学报,2023,54(8):193-200. [20] MURPHY J. Lidar hits the road[J]. Laser Focus World,2022,58(3):32-34. [21] LIU W L,ZHU D L,LUO H H,et al. 3D object detection with fusion of point attention mechanism in LiDAR point clouds[J]. Acta Photonica Sinica,2023,52(9):221-231. 刘威莉,朱德利,骆华昊,等. LiDAR点云中融合点注意力机制的三维目标检测[J]. 光子学报,2023,52(9):221-231. [22] LIU S J,HUANG Z L,YANG L,et al. Optimized monitoring of echo characteristics of reflective LiDAR in mountainous geospatial surveying and exploration[J]. Computer Measurement& Control,2023,31(10):299-305. 刘胜杰,黄振利,杨磊,等. 山地地理测绘勘探中反射式激光雷达回波特征优化监测研究[J]. 计算机测量与控制,2023,31(10):299-305. [23] SUZUKI K,RIN U,MAEDA Y,et al. Forest cover classification using geospatial multimodal data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,42:1091-1096. [24] ZHOU Q G,CHEN D. Study on the differentiation of land use topographic characteristics in Chongqing Mountainous Metropolitan Area[J]. Research of Soil and Water Conservation,2013,20(3):86-91. 周启刚,陈丹. 重庆山地都市区土地利用地形特征分异研究[J]. 水土保持研究,2013,20(3):86-91. [25] DONG R,JIA Z,LI S. Risk assessment and sources identification of soil heavy metals in a typical county of Chongqing Municipality,Southwest China[J]. Process Safety and Environmental Protection,2018,113:275-281. [26] WANG H Q,WU M D,LIU Q,et al. Remote sensing monitoring of land occupation by mining development in a certain area of Shanxi[J]. Remote Sensing for Land and Resources,2018,30(1):116-120. 王海庆,武明德,刘琼,等. 山西某地矿业开发占用土地状况遥感监测[J]. 国土资源遥感,2018,30(1):116-120. [27] SONG J W,ZHANG Y J,LI X C,et al. Comparison of land cover classification based on GF-1 and Landsat-8 images[J]. Progress in Geography,2016,35(2):255-263. 宋军伟,张友静,李鑫川,等. 基于GF-1与Landsat-8影像的土地覆盖分类比较[J]. 地理科学进展,2016,35(2):255-263. [28] LIU C T,FENG Q L,JIN D J,et al. Impervious layer information extraction in Dongying City using random forest combined with Sentinel-1/2[J]. Remote Sensing of Natural Resources,2021,33(3):253-261. 刘春亭,冯权泷,金鼎坚,等. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感,2021,33(3):253-261. [29] TIAN L,FU W X,SUN Y W,et al. Spatial variation of forest coverage in Siberian Boreal Zone over the past 30 years based on TM images[J]. Remote Sensing for Land and Resources,2021,33(1):214-220. 田雷,傅文学,孙燕武,等. 基于TM影像的西伯利亚北方森林覆盖度近30 a空间变化研究[J]. 国土资源遥感,2021,33(1):214-220. [30] ZHAO J,YAN C Y,YANG D J,et al. Information extraction of lodged corn After typhoon disaster based on UAV multispectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(24):56-64. 赵静,闫春雨,杨东建,等. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取[J]. 农业工程学报,2021,37(24):56-64. [31] SHI X X,YANG G B,LI M,et al. Analysis of spatial pattern characteristics of national natural protected areas in Guizhou Province[J]. Research of Soil and Water Conservation,2021,28(6):323-329. 石秀雄,杨广斌,李蔓,等. 贵州省国家级自然保护地空间格局特征分析[J]. 水土保持研究,2021,28(6):323-329. [32] LÜ Z Q,DAI F Q,ZHOU Q G. Gradient analysis of spatial patterns in typical transects of mountainous cities from the perspective of "transportation corridor sprawl"[J]. Acta Ecologica Sinica,2014,34(9):2442-2449. 吕志强,代富强,周启刚.“交通廊道蔓延”视角下山地城市典型样带空间格局梯度分析[J]. 生态学报,2014,34(9):2442-2449 [33] HU J L,TENG Y B,FAN Y M,et al. Spatial distribution and influencing factors of traditional villages in Guangxi Zhuang Autonomous Region[J]. Journal of Guilin University of Technology,2021,41(3):580-588. 胡金龙,滕耀宝,樊亚明,等. 广西壮族自治区传统村落空间分布及影响因素分析[J]. 桂林理工大学学报,2021,41(3):580-588. [34] LI Q J,LIU Y,LI H,et al. Spatial distribution characteristics and influencing factors of traditional villages in Jiangxi based on GIS[J]. Journal of Green Science and Technology,2022,24(21):7-13. 李庆杰,刘悦,李华,等. 基于GIS的江西传统村落空间分布特征及影响因素研究[J]. 绿色科技,2022,24(21):7-13. [35] LU S,ZHANG X J,ZHANG Y C. Spatio-temporal distribution and influencing factors of traditional villages in Huizhou Region[J]. Scientia Geographica Sinica,2018,38(10):1690-1698. 卢松,张小军,张业臣. 徽州传统村落的时空分布及其影响因素[J]. 地理科学,2018,38(10):1690-1698. [36] LI Y,GU W,YUE H,et al. Real-time detection of laryngopharyngeal cancer using an artificial intelligence-assisted system with multimodal data[J]. Journal of Translational Medicine,2023,21(1):698. [37] TONG J,YANG J Z,DU X,et al. Remote sensing monitoring of land remediation and utilization in contaminated sites:A case study of sites listed in Zhejiang Province's risk control and remediation catalog[J]. Remote Sensing of Natural Resources,2022,34(3):235-239. 佟晶,杨金中,杜鑫,等. 污染地块土地治理与开发利用遥感监测:以浙江省风险管控与修复名录地块为例[J]. 自然资源遥感,2022,34(3):235-239. [38] GU X H,PAN Y Z,ZHU X F,et al. Consistency study on remote sensing measurement of winter wheat planting area using MODIS and TM:A small-scale regional experiment[J]. Journal of Remote Sensing,2007(3):350-358. 顾晓鹤,潘耀忠,朱秀芳,等. MODIS与TM冬小麦种植面积遥感测量一致性研究:小区域实验研究[J]. 遥感学报,2007(3):350-358. [39] JI W,ZHAO D,CHENG F,et al. Automatic recognition vision system guided for apple harvesting robot[J]. Computers& Electrical Engineering,2012,38(5):1186-1195. [40] ZHANG J S,WANG Y. Research on Video Recognition Methods for Complex Environments[J]. Journal of North China Institute of Science and Technology,2023,20(4):75-81. 张竣淞,汪洋. 面向复杂环境的视频识别方法研究[J]. 华北科技学院学报,2023,20(4):75-81. [41] JIA X,CAO Y,O’CONNOR D,et al. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field[J]. Environmental Pollution,2021,270:116281. -