Research progress of molecular imprinting sensors for detecting perfluoro and polyfluoroalkyl compounds
-
摘要: 针对全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)在环境中的普遍存在及潜在危害,分类总结了分子印迹传感器检测PFAS的应用研究进展,并阐述了传感器的检测原理、性能和信号转化机制。传统的色谱法和质谱法检测PFAS价格高昂、操作复杂,需要专业的操作人员,无法满足原位检测和连续监测的需求。已有研究表明分子印迹传感器能够对目标分析物快速响应,可降低PFAS的检测复杂性和检测成本,是一种具有发展前景的测定PFAS的方法。分子印迹传感器虽然在PFAS的检测应用中取得了巨大进展,但其在实际应用中仍面临灵敏度、选择性、便携性和商品化问题等方面的挑战,需进一步完善。开发纳米材料和微电极在分子印迹传感器检测中的应用、研究现场连续监测型传感器以及分子印迹传感器标准化、小型化和智能化是未来的重要发展方向。Abstract: In view of the ubiquitous and potential hazards of per- and polyfluoroalkyl substances (PFAS) in the environment, the paper classified and summarized the application research progress of molecular imprinting sensors for detecting PFAS, and explored the detection principle, performance and signal conversion mechanism of the sensors. Traditional chromatography and mass spectrometry are expensive and complicated in detecting PFAS, and require professional operators, cannot meet the requirements of in-situ detection and continuous monitoring. Previous studies have shown that molecular imprinting sensors can respond quickly to the target analyte, reduce the detection complexity and cost of PFAS, and is a promising method for the determination of PFAS. Although the molecularly imprinting sensor has made great progress in application of PFAS detection, it still faces challenges in practical application, such as sensitivity, selectivity, portability and commercialization, which need further improvement. Future study should focus on the application of nano-materials and microelectrodes in the detection of molecularly imprinting sensors, the research of on-site continuous monitoring sensors, as well as the standardization, miniaturization and intelligence of molecular imprinting sensors.
-
1 分子印迹传感器检测PFAS应用分类
1. Application classification of molecular imprinting sensors for detecting PFAS
分子印迹传感器类型 目标分析物 功能单体 样本 检测限 检测范围 参考文献 电化学 PFOS 邻苯二胺 氨缓冲液 20 ng/L 0.1nmol/L~1.5μmol/L [17] PFOA 吡咯 PBS缓冲液 41 μg/L 10 μmol/L~10mmol/L [18] PFOS 邻苯二胺 氨缓冲液 25 ng/L 0.05~500 nmol/L [19] Gen X 邻苯二胺 氨缓冲液 82.5 pg/L 1~5000 pmol/L [20] PFOS 邻苯二胺 PBS缓冲液和河水 1.7 ng/L 0.05~0.5 nmol/L [21] PFOA 吡咯 Na2SO4溶液 444 ng/L 10 nmol/L~90 μmol/L [22] PFOS 铬介孔有机金属框架 PBS缓冲液 0.5 ng/L 0.02 nmol/L~20 μmol/L [23] 光电 PFOS 丙烯酰胺 PBS缓冲液 86 ng/L 0.5~10 μmol/L [25] PFOA 丙烯酰胺 Tris-HCl溶液 10 ng/L 0.48 nmol/L~2.4 μmol/L [26] PFOSF 丙烯酰胺 水溶液 10 ng/L 0.01~995 nmol/L [27] 电化学发光 PFOA 吡咯 PBS缓冲液 10 ng/L 0.48~966 nmol/L [40] 荧光 PFOS 3-氨基丙基三乙氧基硅烷 河水 5.57 μg/L 10.36~90.2 nmol/L [41] PFOA 3-氨基丙基三乙氧基硅烷 醋酸缓冲液 10 μg/L 0.25~15 μmol/L [42] PFOS 壳聚糖 水、血清和尿液 0.4,66,85 pg/L 0.04~0.4 pmol/L [43] PFOS N,O-双(三甲基硅烷基)三氟乙酰胺 水 5 ng/L 0.01~15 nmol/L [44] 光纤 PFOA 乙烯基苄基三甲基氯化铵和全氟癸基丙烯酸酯 水 0.13 μg/L 2~9 nmol/L [46] -
[1] RICHARDSON S D,KIMURA S Y. Water analysis:emerging contaminants and current issues[J]. Analytical Chemistry,2020,92(1):473-505. [2] LANGENBACH B,WILSON M. Per-and polyfluoroalkyl substances(pfas):significance and considerations within the regulatory framework of the USA[J]. International Journal of Environmental Research and Public Health,2021,18(21):11142-11158. [3] ARAUJO R G,RODRIGUEZ-HERNANDEZ J A,GONZALEZ-GONZALEZ R B,et al. Detection and tertiary treatment technologies of poly-and perfluoroalkyl substances in wastewater treatment plants[J]. Frontiers in Environmental Science,2022,10:1-20. [4] FIEDLER H,SADIA M,KRAUSS T,et al. Perfluoroalkane acids in human milk under the global monitoring plan of the Stockholm Convention on Persistent Organic Pollutants(2008-2019)[J]. Frontiers of Environmental Science and Engineering,2022,16(10):132-145. [5] ANDREWS D Q,NAIDENKO O V. Population-wide exposure to per-and polyfluoroalkyl substances from drinking water in the united states[J]. Environmental Science and Technology Letters,2020,7(12):931-936. [6] BOONE J S,VIGO C,BOONE T,et al. Per-and polyfluoroalkyl substances in source and treated drinking waters of the United States[J]. Science of the Total Environment,2019,653:359-369. [7] LI Z. Pollution characteristics and ecological risk assessment of perfluorochemicals in lakes in the middle reaches of the Yangtze River[D]. Wuhan:University of Chinese Academy of Sciences(Wuhan Botanical Garden,Chinese Academy of Sciences),2019. 李珍. 长江中游地区湖泊全氟化合物的污染特征及生态风险评估[D]. 武汉:中国科学院大学(中国科学院武汉植物园),2019. [8] PAN Y T,ZHANG H X,CUI Q Q,et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science and Technology,2018,52:7621-7629. [9] WANG Y,CHANG W G,WANG L,et al. A review of sources,multimedia distribution and health risks of novel fluorinated alternatives[J]. Ecotoxicology and Environmental Safety,2019,182:1-9. [10] LIU M,ZHANG G X,MENG L L,et al. Associations between novel and legacy per-and polyfluoroalkyl substances in human serum and thyroid cancer:a case and healthy population in Shandong Province,East China[J]. Environmental Science and Technology,2022,56:6144-6151. [11] VALDIVIEZO A,ALY N A,LUO Y S,et al. Analysis of per-and polyfluoroalkyl substances in Houston Ship Channel and Galveston Bay following a large-scale industrial fire using ion-mobility-spectrometry-mass spectrometry[J]. Journal of Environmental Sciences,2022,115:350-362. [12] KIRKWOOD K I,FLEMING J,NGUYEN H,et al. Utilizing pine needles to temporally and spatially profile per-and polyfluoroalkyl substances(PFAS)[J]. Environmental Science and Technology,2022,56:3441-3451. [13] MUNOZ G,LIU J X,DUY S V,et al. Analysis of F-53B,Gen-X,ADONA,and emerging fluoroalkylether substances in environmental and biomonitoring samples:a review[J]. Trends in Environmental Analytical Chemistry,2019,23:00066. [14] LV Y Q,QIN Y T,SVEC F,et al. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers[J]. Biosensors and Bioelectronics,2016,80:433-441. [15] AHMAD R,GRIFFETE N,LAMOURI A,et al. Nanocomposites of gold nanoparticles@molecularly imprinted polymers:chemistry,processing,and applications in sensors[J]. Chemistry of Materials,2015,27(16):5464-5478. [16] WANG W R,WANG X X,CHENG N,et al. Recent advances in nanomaterials-based electrochemical(bio)sensors for pesticides detection[J]. Trac-Trends in Analytical Chemistry,2020,132:1-16. [17] KARIMIAN N,STORTINI A M,MORETTO L M,et al. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly(o-phenylenediamine)polymer[J]. ACS Sensors,2018,3(7):1291-1298. [18] FANG C,CHEN Z L,MEGHARAJ M,et al. Potentiometric detection of AFFFs based on MIP[J]. Environmental Technology and Innovation,2016,5:52-59. [19] KAZEMI R,POTTS E I,DICK J E. Quantifying interferent effects on molecularly imprinted polymer sensors for per-and polyfluoroalkyl substances(PFAS)[J]. Analytical Chemistry,2020,92(15):10597-10605. [20] GLASSCOTT M W,VANNOY K J,KAZEMI R,et al. μ-MIP:molecularly imprinted polymer-modified microelectrodes for the ultrasensitive quantification of GenX(HFPO-DA)in River Water[J]. Environmental Science and Technologe Letters,2021,7(7):489-495. [21] CLARK R B,DICK J E. Electrochemical sensing of perfluorooctanesulfonate(PFOS)using ambient oxygen in river water[J]. ACS Sensors,2020,5:3591-3598. [22] WANG Y,REN R K,CHEN F,et al. Molecularly imprinted MOFs-driven carbon nanofiber for sensitive electrochemical detection and targeted electro-Fenton degradation of perfluorooctanoic acid[J]. Separation and Purification Technology,2023,310:1-13. [23] CHENG Y H,BARPAGA D,SOLTIS J A,et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate[J]. ACS Applied Materials and Interfaces,2020,12(9):10503-10514. [24] ZANG Y,LEI J,JU H X. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures[J]. Biosensors and Bioelectronics,2017,96:8-16. [25] TRAN T T,LI J Z,FENG H,et al. Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate(PFOS)[J]. Sensors and Actuators B-Chemical,2014,190:745-751. [26] GONG J M,FANG T,PENG D H,et al. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite[J]. Biosensors and Bioelectronics,2015,73:256-263. [27] LI X,WANG X L,FANG T,et al. Disposable photoelectrochemical sensing strip for highly sensitive determination of perfluorooctane sulfonyl fluoride on functionalized screen-printed carbon electrode[J]. Talanta,2018,181:147-153. [28] MIAO W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews,2008,108(7):2506-2553. [29] DENNANY L,FORSTER R J,RUSLING J F. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films[J]. Journal of the American Chemical Society,2003,125(17):5213-5218. [30] CHOW K F,MAVRE F,CROOKS J A,et al. A large-scale,wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society,2009,131(24):8364-8365. [31] WU B W,WANG Z H,XUE Z H,et al. A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection[J]. Analyst,2012,137(16):3644-3652. [32] LONG Y M,BAO L,ZHAO J Y,et al. Revealing carbon nanodots as coreactants of the anodic electrochemiluminescence of Ru(bpy)32+[J]. Analytical Chemistry,2014,86(15):7224-7228. [33] ZHANG M H,YUAN R,CHAI Y Q,et al. A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection[J]. RSC Advance,2012,2:4639-4641. [34] LI J P,MA F,WEI X P,et al. A highly selective molecularly imprinted electrochemiluminescence sensor for ultra-trace beryllium detection[J]. Analytica Chimica Acta,2015,871:51-56. [35] CHENG L X,LIU X,LEI J P,et al. Low-Potential Electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer[J]. Analytical Chemistry,2010,82(8):3359-3364. [36] CUI R,GU Y P,BAO L,et al. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine[J]. Analytical Chemistry,2012,84(21):8932-8935. [37] ZOU G Z,LIANG G D,ZHANG X L. Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials[J]. Chemical Communications,2011,47(36):10115-10117. [38] WANG X F,ZHOU Y,XU J J,et al. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine[J]. Advanced Functional Materials,2009,19(9):1444-1450. [39] CHEN Y,CAO Y,MA C,et al. Carbon-based dots for electrochemiluminescence sensing[J]. Materials Chemistry Frontiers,2020,4(2):369-385. [40] CHEN S H,LI A M,ZHANG L Z,et al. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-Based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid[J]. Analytical Chemical Acta,2015,896:68-77. [41] FENG H,WANG N,TRAN T T,et al. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate[J]. Sensors and Actuators B-Chemical,2014,195:266-273. [42] ZHENG L,ZHENG Y H,LIU Y,et al. Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid[J]. Talanta,2019,194:1-6. [43] JIAO Z,LI J W,MO L J,et al. A molecularly imprinted chitosan doped with carbon quantum dots for fluorometric determination of perfluorooctane sulfonate[J]. Microchimica Acta,2018,185(10):473-481. [44] LI J,GUO H Q,YU H,et al. Upconversion molecularly imprinted fluorescent probe based on mesoporous structure for the detection of perfluorooctane sulfonic acid[J]. Analytical chemistry research report,2020,48(11):1493-1501. 李晶,郭会琴,于慧,等. 基于介孔结构的上转换分子印迹荧光探针检测全氟辛烷磺酸[J]. 分析化学研究报告,2020,48(11):1493-1501. [45] HOMOLA J,YEE S S,GAUGLITZ G. Surface plasmon resonance sensors:review[J]. Sensors and Autuators B-Chemical,1999,54(1):3-15. [46] CENNAMO N,D´AGOSTINO G,PORTO G,et al. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water[J]. Sensors,2018,18(6):2-11. [47] CORDNER A,DE LA ROSA V Y,SCHAIDER L A,et al. Guideline levels for PFOA and PFOS in drinking water:the role of scientific uncertainty,risk assessment decisions,and social factors,[J]. Journal of Exposure Science and Environmental Epidemiology,2019,29(2):157-171. [48] ZHENG Z,YU H J,GENG W C,et al. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants[J]. Nature Communications,2019,10:5762-5770. [49] CANFAROTTA F,POMA A,GUERREIRO A,et al. Solid-phase synthesis of molecularly imprinted nanoparticles[J]. Nature Protocols,2016,11(3):443-455. [50] LAWLOR A,TORRES J,O´FLYNN B,et al. DEPLOY:a long term deployment of a water quality sensor monitoring system[J]. Sensor Review,2012,32(1):29-38. [51] XISCATTI L,DZIEDZIC M. Comparing methods to improve reliable sensor deployment time in continuous water quality monitoring[J]. Water Supply,2020,20(1):307-318. -