Impacts and mechanisms of hydrodynamic effects on methane production and emission in gravity-flow sewers
-
摘要: 双碳背景下城镇重力流污水管道中甲烷产排的规律与机制是污水收集系统的研究热点,也是突破城镇污水处理行业减污降碳技术的理论基础。针对复杂水动力条件下城镇重力流污水管网中甲烷的产排过程,利用文献比对和总结归纳,从时空尺度分析了城镇重力流污水管道内的水动力特性;探讨了管道流速、水力停留时间、剪切力等水动力特性对甲烷产排的影响规律,从管道沉积物沉降与侵蚀、营养物质和溶解氧传递等方面解析了水动力对甲烷产排的影响途径;从气体迁移、微生物群落分布和代谢通路3个角度对水动力影响污水管道中甲烷产排的机制进行解析,并指出关注污水管道内非稳态和紊动特性、沉积物表面微生物附着后的侵蚀及甲烷产排过程、水动力影响污水管道甲烷产排的机制是未来的研究方向。该研究结果可帮助理解重力流污水管道中甲烷产排的全过程,为低碳污水管网的设计、建设和运维提供支撑。Abstract: The impacts and mechanisms of methane (CH4) production and emission in municipal gravity-flow sewer system under dual-carbon constraints is a critical topic in wastewater management, serving as the foundation for advancing pollution reduction and carbon mitigation technologies. This study examined the hydrodynamic characteristics of municipal gravity-flow sewers, focusing on spatial and temporal scales. The results demonstrated that the water flow exhibited unsteady, turbulent, and secondary-flow characteristics. The study then explored how hydrodynamic factors such as pipeline flow rate, hydraulic residence time(HRT), and shear stress influenced methane production and emission. The findings indicated that methane production exhibited an increasing trend and subsequently decreased with an increase in flow rate and shear force within a specified range, demonstrating proportionality with the HRT. It also analyzed the effects of hydrodynamics on methane production and emission, considering pipeline sediment settlement, erosion, nutrient, and dissolved oxygen transfer. It revealeds that flow velocity and shear stress affected sediment formation and subsequent suspension, and hydrodynamic force introduced air into water, altering dissolved oxygen levels and impacting the anaerobic environment for methanogenic archaea. These actions also influenced nutrient mass transfer and microbial growth. The mechanisms by which hydrodynamics influence methane production and emission in wastewater pipelines were elucidated from three perspectives: gas migration, microbial community distribution, and metabolic pathways. Future research directions include investigating the unsteady and turbulent characteristics within wastewater pipelines, erosion of microbial-attached sediment surfaces, and the mechanisms by which hydrodynamics affect methane production and emission. These findings contribute to understanding methane production and emission processes in gravity-flow sewers and support the development, construction, operation, and maintenance of low-carbon sewage networks.
-
Key words:
- sewer /
- carbon emission /
- hydrodynamic force /
- sediment /
- methane
-
3 流速对甲烷代谢通路中关键酶和对应基因相对丰度的影响(改编自文献[49])
3. Influence of flow velocity on relative abundance of key enzymes and genes in methane metabolic pathways (adapted from literature [49])
4 污水管道气体迁移示意图(改编自文献[58])
4. Schematic diagram of gas migration in sewage pipelines (adapted from literature [58])
1 重力流污水管道的水动力特性研究
1. Hydrodynamic characteristics of gravity-flow sewers
管段位置 水力特性 文献来源 澳大利亚昆士兰州东南部,山地、平原区域城市,城市尺度污水管道系统 平均流量约为10 万m3/d管网,其平均HRT为7.2 h [15] 中国重庆,山地区域城市,商业、住宅区生活污水管道 管道中的平均充满度在0.1~0.3,不足设计值的55%,凌晨时流速趋于0,水位<0.1 m,不同工作日污水流速波峰均出现在22:30左右,最大流速1.3 m/s [16]、[17] 中国广东某市,台地和平原为主,生活区污水管道 市政管道某监测点凌晨最低流量约1 m3/s,17:00—21:00峰值流量约3.2 m3/s [18] 中国广西南宁,平原和低山为主,小区排水口 3个小区全天均存在3个流量峰期,分别为07:00—09:00、11:00—13:00和18:00—24:00,水量最大值/平均值为1.56~1.76,最大值/最小值为3.99~4.85 [19] 中国内蒙古某市,丘陵岗区城市,典型小区排水户 每日有2次流量高峰,分别出现在07:00—12:00与17:00—21:00附近,峰值流量约为0.02 m3/s,夜间存在断流时间 [20] 2 水动力参数指标对CH4产排影响结果及规律
2. Influence and patterns of hydrodynamic parameters on CH4 production and emission
影响因素 研究结果 影响规律 参考文献 流速 流速增加导致了沉积物中CH4生成速率增加,流速从0.13 m/s增至0.31 m/s,沉积物CH4产量从3.06 g COD/(m2·d)增至13.87g COD/(m2·d) CH4产量与流速成正比 [11] 流速 在0.2~0.6 m/s流速梯度下管道流速越大,CH4的气体浓度越高;在0.5~1.2 m/s水力扰动下CH4产量有所减少 在一定流速范围内CH4产量随流速先增加后降低 [12] 剪切力 短期降解条件下,CH4 的7日累计排放量随上覆生活污水剪应力的增大而呈现先上升后下降的趋势,且当剪应力为0.0748 N/m2时CH4产排能力最高 CH4产量随剪切力增加先上升后下降 [27] 水力停留时间 减小流量组与对照组的HRT差异约为40%,其较高的HRT使甲烷生长时间较长,从而导致甲烷浓度较高,造成约30%的甲烷产量增加 CH4产量与HRT成正比 [13] 水力停留时间 在同样管长(1000 m)和管径(1000 mm)条件下,HRT为7.8,27.9 h的管道内平均甲烷浓度分别为4.6,10.1 mg/L HRT越长,CH4产量越高 [14] 水力工况 断流工况下CH4累积排放通量显著小于持续水流工况,产CH4速率经历了初期短暂的提升之后迅速下降,并逐渐趋于0 断流工况下CH4产量低于持续水流工况 [27] 3 污水管道沉积物中与甲烷产量相关的菌属
3. Bacteria associated with methane production in sewer sediments
门水平微生物 属水平微生物 参考文献 — Bacteroidete_vadinHA17Methanospirillum [48] BacteroidotaHalobacteroteEuryarchaeota BacteroidesParabacteroidesAlloprevotellaPrevotellaceae_UCG-001MethanobacteriumMethanosaeta [12] — MethanothrixMethanobacteriumMethanolineaMethanospirillumMethanomethylovoransMethanoregula [49] Euryarchaeota MethanospirillumMethanobacteriaceaeMethanobrevibacterMethanosaeta [31] — MethanosaetaMethanospirillumMethanomethylovoransMethanobrevibacterMethanobacteriumC.Methanomethylophilus [50] -
[1] LI W,ZHENG T,MA Y,et al. Current status and future prospects of sewer biofilms:Their structure,influencing factors,and substance transformations[J]. Sci Total Environ,2019,695:133815. [2] KYUNG D,KIM D,YI S,et al. Estimation of greenhouse gas emissions from sewer pipeline system[J]. International Journal of Life Cycle Assessment,2017,22(12):1901-1911. [3] CAI B,ZHU S L,YU S M,et al. The interpretation of 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory[J]. Environmental Engineering,2019,37(8):1-11. 蔡博峰,朱松丽,于胜民,等.《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程,2019,37(8):1-11. [4] SHI X,SANG L,WANG X C,et al. Pollutant exchange between sewage and sediment in urban sewer systems[J]. Chemical Engineering Journal,2018,351:240-247. [5] SUN J,NI B J,SHARMA K R,et al. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J]. Water Research,2018,129:58-65. [6] KHU S T,XIN C,WANG T,et al. Effects of hydraulic conditions on biofilm detached in drinking water distribution system[J]. Journal of Water Process Engineering,2023,53. [7] LI W,ZHENG T,MA Y,et al. Influences of flow conditions on bacterial communities in sewage and greywater small diameter gravity sewer biofilms[J]. Environ Res,2020,183:109289. [8] LIU Y,NI B J,GANIGUÉ R,et al. Sulfide and methane production in sewer sediments[J]. Water Research,2015,70:350-359. [9] GAO Y,SHI X,JIN X,et al. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems[J]. Water Res,2023,228(Pt B):119398. [10] CHEN Y,SHI X,JIN X,et al. Characteristics of overflow pollution from combined sewer sediment:Formation,contribution and regulation[J]. Chemosphere,2022,298:134254. [11] LIU Y,TUGTAS A E,SHARMA K R,et al. Sulfide and methane production in sewer sediments:Field survey and model evaluation[J]. Water Res,2016,89:142-150. [12] REN J H,YIN W M,HE X S,et al. Effect of hydraulic conditions on abundance of sulfate-reducing bacteria and methanogen in sediment layer of sewage pipe network[J]. China Water& Wastewater,2022,38(23):17-22. 任俊豪,殷伟民,贺酰淑,等. 水力条件对污水管网沉积层中SRB与MA的影响[J]. 中国给水排水,2022,38(23):17-22. [13] SUN J,HU S,SHARMA K R,et al. Impact of reduced water consumption on sulfide and methane production in rising main sewers[J]. J Environ Manage,2015,154:307-315. [14] CHAOSAKUL T,KOOTTATEP T,POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances& Environmental Engineering,2014,49(11):1316-1321. [15] PIKAAR I,SHARMA K R,HU S H,et al. Reducing sewer corrosion through integrated urban water management[J]. Science,2014,345(6198):812-814. [16] JIANG W C,YANG X,DONG X X,et al. Monitoring and analysis of hydraulic parameters of municipal sewer in an urban area of Chongqing City[J]. China Water& Wastewater,2022,38(15):78-83. 姜文超,杨希,董晓霞,等. 重庆市某城区市政污水管道水力参数监测与分析[J]. 中国给水排水,2022,38(15):78-83. [17] ZHANG Z Q. Hydraulic,wastewater quality and microbial characteristics and key interrelationships for municipal sewer in an urban area of Chongqing[D]. Chongqing:Chongqing University,2022. 张卓群. 重庆市某城区污水管道水力、水质和微生物特征及其主要相关性研究[D]. 重庆:重庆大学,2022. [18] SUN L. Leakage range evaluation of drainage pipe network based on operating conditions[D]. Shenzhen:Harbin Institute of Technology,2021. 孙露. 基于运行工况的排水管网漏损范围评价研究[D]. 深圳:哈尔滨工业大学,2021. [19] WU B,ZHANG M,LI Y P,et al. Discharge law of domestic wastewater and pollutants discharge of urban residents in South China[J]. Environmental Engineering,2022,40(12):196-201,80. 伍彬,张鸣,李一平,等. 华南地区城镇居民生活污水排放规律及污染物排放量[J]. 环境工程,2022,40(12):196-201,80. [20] GUO Z B,LI Y H,LV H L,et al. Research on the quality and efficiency improvement of municipal wastewater treatment in northern hilly city based on monitoring and evaluation[J]. China Water& Wastewater,2023,39(16):116-123. 郭紫波,栗玉鸿,吕红亮,等. 基于监测评估的北方丘陵城市污水提质增效研究[J]. 中国给水排水,2023,39(16):116-123. [21] BECKERS L M,BUSCH W,KRAUSS M,et al. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system[J]. Water Research,2018,135:122-133. [22] JI H W,YOO S S,LEE B J,et al. Measurement of wastewater discharge in sewer pipes using image analysis[J]. Water,2020,12(6). [23] LIU L. Research on hydraulic characteristics of sewer based on state of serpentine fluctuation[D]. Guangzhou:Guangdong University of Technology,2012. 刘亮. 排水管道蛇形起伏状态下水力特性的研究[D]. 广州:广东工业大学,2012 [24] MAO Z Y,DING F L,HAN K,et al. Research on the hydraulic characteristics of circular pipes with non-full flow[C]// Proceedings of the 27th National Academic Conference on Structural Engineering(Volume II). Beijing,2018:5. 茅泽育,丁法龙,韩凯,等. 圆形断面管道非满流水力特性研究[C]// 第27届全国结构工程学术会议论文集(第Ⅱ册),2018:5. [25] CHEN S Z,SUN B,FANG H Y,et al. Analysis of the roughness coefficient of overflow in a drainage pipeline with sedimentation[J]. Journal of Pipeline Systems Engineering and Practice,2022,13(4):1-10. [26] XUE Z X,FENG Q,FANG F,et al. Emission characteristics and mechanisms of methane in municipal sewer systems[J]. Environmental Engineering,2022,40(6):123-129,93. 薛朝霞,冯骞,方芳,等. 城镇污水管道系统甲烷产排特性及发生机制[J]. 环境工程,2022,40(6):123-129,93. [27] WANG Z N,ZHOU H,ZHOU Y F,et al. A study on the influence of hydraulic condition and water quality on carbon emission of gravity sewer[J]. Energy Environmental Protection,2019,33(3):15-22. 汪钟凝,陈浩,周雅菲,等. 水力水质条件对重力排水管道碳排放的影响研究[J]. 能源环境保护,2019,33(3):15-22. [28] JIN P,GU Y,SHI X,et al. Non-negligible greenhouse gases from urban sewer system[J]. Biotechnology for Biofuels,2019,12(1):100. [29] HUANG N X,QI Y F,JIN W. Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology,2021,11(3):507-513. 黄乃先,齐一凡,金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报,2021,11(3):507-513. [30] SUN J,HU S,SHARMA K R,et al. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities[J]. Water Research,2015,69:80-89. [31] CHEN H,WANG Z,LIU H,et al. Variable sediment methane production in response to different source-associated sewer sediment types and hydrological patterns:Role of the sediment microbiome[J]. Water Res,2021,190:116670. [32] REN D,ZUO Z,XING Y,et al. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments[J]. Water Research,2022,211:118010. [33] BANASIAK R,VERHOEVEN R,SUTTER R D,et al. The erosion behaviour of biologically active sewer sediment deposits:Observations from a laboratory study[J]. Water Research,2005,39(20):5221-5231. [34] CHENG W,FANG H,LAI H,et al. Effects of biofilm on turbulence characteristics and the transport of fine sediment[J]. Journal of Soils and Sediments,2018,18(10):3055-3069. [35] HAN J S,SHI X,ZHANG J F,et al. Starting law and pollution contribution characteristics of stratified sediment scouring in sewage pipes[J]. China Environmental Science,2023:1-7. 韩剑霜,石烜,张建锋,等. 污水管道沉积物分层冲刷的起动规律及其污染贡献特性[J]. 中国环境科学,2023:1-7. [36] DESMOND P,BEST J P,MORGENROTH E,et al. Linking composition of extracellular polymeric substances(EPS)to the physical structure and hydraulic resistance of membrane biofilms[J]. Water Research,2018,132:211-221. [37] MENG D,WU J,CHEN K,et al. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment,2019,687:494-504. [38] SHAO W Y,QIAN D,MA Y,et al. Flume experimental study of erosion characteristic of sewer sediment with biological activities[J]. Journal of Hunan University(Natural Sciences),2016,43(12):148-155. 邵卫云,钱栋,马妍,等. 明渠流下生物作用对管道沉积物冲蚀特性影响试验研究[J]. 湖南大学学报(自然科学版),2016,43(12):148-155. [39] ROCHEX A,GODON J J,BERNET N,et al. Role of shear stress on composition,diversity and dynamics of biofilm bacterial communities[J]. Water Research,2008,42(20):4915-4922. [40] ZENG S. Numerical simulation of effect of turbulent pulsation on reactor and membrane mass transfer[D]. Chongqing:Chongqing University,2020. 曾诗. 紊流脉动对反应器及膜传质影响的数值模拟[D]. 重庆:重庆大学,2020. [41] DE BEER D,STOODLEY P,LEWANDOWSKI Z. Liquid flow and mass transport in heterogeneous biofilms[J]. Water Research,1996,30(11):2761-2765. [42] LI Y. A simulation and experiment study on process of mass transportin internal loop biofilm reactor[D]. Dalian:Dalian University of Technology,2007. 李宇. 内环流生物膜反应器传质过程模拟及实验研究[D]. 大连:大连理工大学,2007. [43] LONG T Y,GUO L S,JIA L M,et al. Effect of turbulent pulsation on physical and chemical properties of biofilm[J]. Journal of Harbin Institute of Technology,2021,53(11):14-20. 龙天渝,郭莉莎,贾黎明,等. 紊流脉动对生物膜理化性质的影响[J]. 哈尔滨工业大学学报,2021,53(11):14-20. [44] HAO X D,YANG Z L,ZHANG Y N,et al. Production mechanism and control strategy of CH4,H2S and N2O in drainage pipeline[J]. Chinese Journal of Environmental Engineering,2023,17(1):1-12. 郝晓地,杨振理,张益宁,等. 排水管道中CH4、H2S与N2O的产生机制及其控制策略[J]. 环境工程学报,2023,17(1):1-12. [45] YANG Z,ZHANG Z Q,YANG J,et al. Flume experimental study of erosion characteristic of sewer sediment with biological activities[J]. Environmental Science,2022,43(4):2055-2061. 杨洲,张志强,杨静,等. 污水管道增强通风作用下氧气气液传质特性[J]. 环境科学,2022,43(4):2055-2061. [46] ZHU S,CHEN S. Impacts of Reynolds number on nitrification biofilm kinetics[J]. Aquacultural Engineering,2001,24(3):213-229. [47] PER,HALKJAER,NIELSEN,et al. Transformation of wastewater in sewer systems:a review[J]. Water Science and Technology,1992. [48] CHEN H,YE J,ZHOU Y,et al. Variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers:An assessment of the role of dissolved organic matter components and microbiota[J]. Environ Pollut,2020,263(Pt A):114489. [49] LIU W,SHI X,XU D W,et al. Effect of flow velocity on methane and sulfide formation in sewage pipes[J]. China Environmental Science,2023,43(6):2938-2947. 刘伟,石烜,徐栋伟,等. 流速对污水管道中甲烷与硫化物生成的影响[J]. 中国环境科学,2023,43(6):2938-47. [50] SUN J,HU S,SHARMA K R,et al. Stratified microbial structure and activity in sulfide-and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology,2014,80(22):7042. [51] CHEN F,NIU Y,AN Z,et al. Effects of periodic drying-wetting on microbial dynamics and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in intertidal wetland sediments[J]. Water Research,2023,229:119436. [52] EIJO-RíO E,PETIT-BOIX A,VILLALBA G,et al. Municipal sewer networks as sources of nitrous oxide,methane and hydrogen sulphide emissions:A review and case studies[J]. Journal of Environmental Chemical Engineering,2015. [53] FOLEY J,YUAN Z,LANT P. Dissolved methane in rising main sewer systems:field measurements and simple model development for estimating greenhouse gas emissions[J]. Water Science& Technology A Journal of the International Association on Water Pollution Research,2009,60(11):2963. [54] WARD M,CORSI R,MORTON R,et al. Characterization of natural ventilation in wastewater collection systems[J]. Water Environment Research,2011. [55] MADSEN I H,HVITVED-Jacobsen T,VOLLERTSEN J. Gas phase transport in gravity sewers:a methodology for determination of horizontal gas transport and ventilation[J]. Water Environment Research(10614303),2006. [56] LV P,ZHANG J,PANG L,et al. Influence of multiple factors on the explosion characteristics of flammable gases in municipal sewage pipelines[J]. Advances in Civil Engineering,2020,2020:3193012. [57] WANG D,HUANG P,QIAN X,et al. Study on the natural gas diffusion behavior in sewage pipeline by a new outdoor full-scale water cycling experimental pipeline system[J]. Process Safety and Environmental Protection,2021,146:599-609. [58] WANG J H. Study on diffusion and distribution law of harmful gas in sewage pipeline based on Ventsim original scale simulation and application case[D]. Xi'an:Xi'an University of Architecture and Technology,2022. 王佳豪. 基于Ventsim原尺度模拟的污水管道内有害气体扩散与分布规律研究及应用案例[D]. 西安:西安建筑科技大学,2022. -
登录
注册
E-alert
登录
注册
E-alert
下载: