中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质能耦合高温AOD渣处置不锈钢酸洗污泥工艺

冯晓明 赵峥 郁健 张延玲

冯晓明, 赵峥, 郁健, 张延玲. 质能耦合高温AOD渣处置不锈钢酸洗污泥工艺[J]. 环境工程, 2025, 43(7): 10-17. doi: 10.13205/j.hjgc.202507002
引用本文: 冯晓明, 赵峥, 郁健, 张延玲. 质能耦合高温AOD渣处置不锈钢酸洗污泥工艺[J]. 环境工程, 2025, 43(7): 10-17. doi: 10.13205/j.hjgc.202507002
FENG Xiaoming, ZHAO Zheng, YU Jian, ZHANG Yanling. A mass-energy coupling treatment process for stainless steel pickling sludge using high-temperature argon-oxygen decarburization (AOD) slag[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 10-17. doi: 10.13205/j.hjgc.202507002
Citation: FENG Xiaoming, ZHAO Zheng, YU Jian, ZHANG Yanling. A mass-energy coupling treatment process for stainless steel pickling sludge using high-temperature argon-oxygen decarburization (AOD) slag[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 10-17. doi: 10.13205/j.hjgc.202507002

质能耦合高温AOD渣处置不锈钢酸洗污泥工艺

doi: 10.13205/j.hjgc.202507002
基金项目: 

国家重点研发计划项目(2019YFC1905701)

详细信息
    作者简介:

    冯晓明(1985—),男,工程师。937251421@qq.com

    通讯作者:

    张延玲(1972—),女,博士,教授。ustbzly1108@163.com

A mass-energy coupling treatment process for stainless steel pickling sludge using high-temperature argon-oxygen decarburization (AOD) slag

  • 摘要: 提出质能耦合处理不锈钢酸洗污泥工艺路线,以实现AOD渣能源资源双利用和酸洗污泥解毒。基于实验室实验、计算热力学与SEM-EDS分析,探究AOD渣-污泥混合体系中硫、铬、铁元素的分配与转化机制。结果显示,含碳酸洗污泥球团预处理时无含硫气体逸出,高温AOD渣浴还原时硫在气相中的分配比为0.55%、渣中固定率达99.68%,铬铁金属回收率约为90%。球团在高温AOD渣中的内在转化机制:内部还原由CaSO4向CaS转变、FeCr2O4生成、Fe—Cr—C金属聚集长大,球团在熔渣中的溶解行为包括铁氧化物向Mg(Fe,Cr)2O4、Mg(Al,Cr)2O4转变,最终形成MgCr2O4的过程以及CaS在渣中的稳定化过程。该研究为二者协同处置的工业应用提供了依据。
  • [1] WU M,LI Y,GUO Q,et al. Harmless treatment and resource utilization of stainless steel pickling sludge via direct reduction and magnetic separation[J]. Journal of Cleaner Production,2019,240:118187.
    [2] ZHAO J,ZHAO Z,SHI R,et al. Issues Relevant to Recycling of Stainless-Steel Pickling Sludge[J]. JOM,2018,70(12):2825-2836.
    [3] LI X M,JIA L F,ZOU C,et al. Progress and trend on comprehensive utilization of stainless steel pickling sludge[J]. Iron&Steel,2019,54(10):1-11.李小明,贾李锋,邹冲,等.不锈钢酸洗污泥资源化利用技术进展及趋势[J].钢铁,2019,54(10):1-11.
    [4] .谢高. 2022年全球不锈钢粗钢产量同比下降5.2%[N].中国冶金报,2023.

    XIE G. Global stainless steel crude steel production to fall 5.2% year-on-year in 2022[N]. China Metallurgical Newspaper,2023
    [5] CASTRO F,TAVARES P B,CRISTELO N,et al. Characterization of stainless steel spent pickling sludge and prospects for its valorization[J]. Metals,2022,12(9):1539.
    [6] LI G,WANG J,RAO M,et al. Coprocessing of stainless-steel pickling sludge with laterite ore via rotary kiln-electric furnace route enhanced desulfurization and metal recovery[J]. Process Safety and Environmental Protection,2020,142:92-98.
    [7] GU B S,PENG C,WANG N,et al. The current situation and prospects of resource utilization and disposal of stainless steel pickling sludge[J]. Journal of Iron and Steel Research,2024,36(8):975-990.顾宝澍,彭程,王宁,等.不锈钢酸洗污泥的资源化处置现状及展望[J].钢铁研究学报,2024,36(8):975-990.
    [8] YANG C,PAN J,ZHU D,et al. Pyrometallurgical recycling of stainless steel pickling sludge a review[J]. Journal of Iron and Steel Research International,2019,26(6):547-557.
    [9] LIU S,LI Q,WANG Z,et al. Metals droplet assembling mechanism during carbon reduction of stainless steel pickling sludge[J]. Journal of Cleaner Production,2020,247:119580.
    [10] WANG H,ZHANG G,CHOU K. Preparation of low-carbon and low-sulfur Fe-Cr-Ni-Si alloy by using CaSO4-containing stainless steel pickling sludge[J]. Metallurgical and Materials Transactions B,2020,51(5):2057-2067.
    [11] ZHANG S,YANG J,LIU B,et al. One-step crystallization kinetic parameters of the glass-ceramics prepared from stainless steel slag and pickling sludge[J]. Journal of Iron and Steel Research International,2016,23(3):220-224.
    [12] PAN D A,LI L J,YANG J,et al. Production of glass-ceramics from heavy metal gypsum and pickling sludge[J]. International Journal of Environmental Science and Technology,2015,12(9):3047-3052.
    [13] CLAUDIU A,LUCIA M D,DANAADRIANA I. Study regarding the micro filler effect of sludge resulting from steel pickling[J]. Metals,2021,11(2):361.
    [14] BYOUNGSUN P,CHEOL C Y. Investigation of carbon-capture property of foam concrete using stainless steel AOD slag[J]. Journal of Cleaner Production,2020,288:125621.
    [15] XU Y,ZHANG Z Z,WANG B,et al. Curing influence factors and mechanism of stainless steel slag in AOD[J]. Iron&Steel,2017,52(8):43-47,80.许莹,张孜孜,王变,等.不锈钢AOD渣固化效果影响因素及其机理[J].钢铁,2017,52(8):43-47,80.
    [16] DI MARIA A,SALMAN M,DUBOIS M,et al. Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag[J]. The International Journal of Life Cycle Assessment,2018,32(11):2091-2109.
    [17] LIU B,LI J,ZENG Y,et al. Toxicity assessment and geochemical model of chromium leaching from AOD slag[J]. Chemosphere,2016,144:2052-2057.
    [18] ZHANG X,NA H,LIU P,et al. A novel"two-step"γ → α,L → β phase transformation method for dicalcium silicate in AOD Slag for improving hydration activity[J]. Metallurgical and Materials Transactions,2023,54(2):712-733.
    [19] WANG H,ZHOU G,MU Y,et al. Enhanced carbon dioxide sequestration and Cr detoxification direct carbonation of AOD slag with additives under ambient conditions[J]. Journal of Cleaner Production,2024,443:141181.
    [20] HUANG L,WEI G,LAN Z,et al. Preparation and mechanism analysis of stainless steel AOD slag mixture base materials[J]. Materials,2024,17(5).
    [21] WU S,ZHANG S,ZHANG Y,et al. Reuse of vitrified argon oxygen decarburization slag as supplementary cementitious materials Comprehensive performance and chromium immobilization mechanism[J]. Construction and Building Materials,2022,348.
    [22] TAO M,WANG Y,LI J,et al. Slurry-phase carbonation reaction characteristics of AOD stainless steel slag[J]. Processes,2021,9(12):2266.
    [23] YANG Z Q,SAIYIN B,SHI Z K,et al. Study on the properties of C30 concrete prepared by multi-solid waste coupled cement[J]. Environmental Engineering,2023,41(3):143-147.杨志强,赛音巴特尔,时朝昆,等.多固废耦合水泥制备C30混凝土性能研究[J].环境工程,2023,41(3):143-147.
    [24] BARATI M,JAHANSHAHI S. Granulation and heat recovery from metallurgical slags[J]. Journal of Sustainable Metallurgy,2020,6(11):191-206.
    [25] DURINCK D,ENGSTRÖM F,ARNOUT S,et al. Hot stage processing of metallurgical slags[J]. Resources,Conservation&Recycling,2008,52(10):1121-1131.
    [26] LI Y,DAI W. Modifying hot slag and converting it into value-added materials:a review[J]. Journal of Cleaner Production,2018,175:176-189.
    [27] SONG W M,ZHOU J A,LI S,et al. Experimen on coal char reductive decomposition and sintering flue gas desulfurization gypsum[J]. Iron&Steel,2019,54(11):110-115.宋伟明,周建安,李数,等.煤焦还原分解烧结烟气脱硫石膏的试验[J].钢铁,2019,54(11):110-115.
    [28] WEI J,GONG L,ZUO D W,et al. Experimental studies on reduction desulfurization of pellets containing carbon of FGD gypsum from iron ore sintering process[J]. Energy for Metallurgical Industry,2023,42(1):17-21.韦杰,巩磊,左大文,等.烧结烟气脱硫石膏含碳球团还原脱硫实验研究[J].冶金能源,2023,42(1):17-21.
    [29] QI Q S,XU A J,HE D F,et al. Carbothermic reduction for recycling of iron and chromium from stainless steel slag[J]. Iron&Steel,2017,52(3):82-87.漆启松,徐安军,贺东风,等.碳热还原法回收不锈钢尾渣中铁和铬的试验[J].钢铁,2017,52(3):82-87.
    [30] WU T,ZHANG Y,ZHAO Z,et al. Effects of Fe2O3 on reduction process of Cr-containing solid waste self-reduction briquette and relevant mechanism[J]. Metals,2019,9(1):51.
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-02
  • 录用日期:  2024-08-05
  • 修回日期:  2024-07-31
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回