中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全氟烷基类物质热解和脱氟机理研究进展

邵恒 程子堃 曹润姿 易美玲 徐双 李阳

邵恒, 程子堃, 曹润姿, 易美玲, 徐双, 李阳. 全氟烷基类物质热解和脱氟机理研究进展[J]. 环境工程, 2025, 43(8): 49-59. doi: 10.13205/j.hjgc.202508004
引用本文: 邵恒, 程子堃, 曹润姿, 易美玲, 徐双, 李阳. 全氟烷基类物质热解和脱氟机理研究进展[J]. 环境工程, 2025, 43(8): 49-59. doi: 10.13205/j.hjgc.202508004
SHAO Heng, CHENG Zikun, CAO Runzi, YI Meiling, XU Shuang, LI Yang. A review on pyrolysis and defluorination mechanisms of perfluoroalkyl substances (PFASs)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 49-59. doi: 10.13205/j.hjgc.202508004
Citation: SHAO Heng, CHENG Zikun, CAO Runzi, YI Meiling, XU Shuang, LI Yang. A review on pyrolysis and defluorination mechanisms of perfluoroalkyl substances (PFASs)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 49-59. doi: 10.13205/j.hjgc.202508004

全氟烷基类物质热解和脱氟机理研究进展

doi: 10.13205/j.hjgc.202508004
详细信息
    作者简介:

    邵恒(1996—),男,博士研究生,主要研究方向为环境化学。202131180049@mail.bnu.edu.cn

    通讯作者:

    李阳(1985—),女,教授,主要研究方向为水中持久性有机污染物的治理技术。liyang_bnu@bnu.edu.cn

A review on pyrolysis and defluorination mechanisms of perfluoroalkyl substances (PFASs)

  • 摘要: 全氟烷基类物质(PFASs)因其高化学稳定性,广泛应用于工业领域及日常生活。其具有较高的生物毒性和持久性,已经成为全球关注的典型持久性有机污染物。PFASs中高稳定的碳氟键,使其难以被常规方法彻底降解。热解技术凭借其对C—F和C—C键的高效裂解能力和较低的运行成本,成为降解PFASs的重要途径和方法。总结了PFASs自身理化性质(官能团和链长)和反应条件(温度、气氛和助催剂)对PFASs热解的影响,发现官能团自身热稳定性越低,PFASs热解温度越低;链长增加,PFASs的热解温度降低;随着温度上升,PFASs的降解效率和脱氟率增加,PFASs热解时间越短;氧气和水蒸气会加速PFASs的氧化分解;活性炭和铝/铜氧化物通过吸附作用降低PFASs的热解温度,促进PFASs低温分解;钙/钠基助催剂能提高PFASs的脱氟率,减少挥发性有机氟产物的生成。此外,总结了PFASs热解的反应路径,主要包括头端官能团脱除、碳链断裂、短链全氟碳和无机氟化物生成3个阶段。并指出彻底无害化处理PFASs需要继续深入揭示PFASs降解的分子动力学机制、优化助催剂、控制短链全氟碳的产生。该综述可为处理含PFASs的固废提供理论依据与技术支持,实现PFASs的无害化目标。
  • [1] KOTTHOFF M,MÜLLER J,JÜRLING H,et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products [J]. Environmental Science and Pollution Research,2015,22:14546-14559.
    [2] GLÜGE J,SCHERINGER M,COUSINS I T,et al. An overview of the uses of per-and polyfluoroalkyl substances (PFAS)[J]. Environmental Science:Processes & Impacts,2020,22(12): 2345-2373.
    [3] DICKMAN R A, AGA D S. A review of recent studies on toxicity, sequestration, and degradation of per-and polyfluoroalkyl substances (PFAS)[J]. Journal of Hazardous Materials,2022,436:129120.
    [4] ACKERMAN G D,GILBERT D,HOU J,et al. Underestimated burden of per-and polyfluoroalkyl substances in global surface waters and groundwaters[J]. Nature Geoscience,2024,17(4): 340-346.
    [5] TEAF C M, GARBER M M, COVERT D J, et al. Perfluorooctanoic acid (PFOA) : environmental sources, chemistry,toxicology,and potential risks[J]. Soil and Sediment Contamination:An International Journal,2019,28(3):258-273.
    [6] BRUSSEAU M L, ANDERSON R H, GUO B. PFAS concentrations in soils:background levels versus contaminated sites[J]. Science of the Total Environment,2020,740:140017.
    [7] JIAN J M,CHEN D,HAN F J,et al. A short review on human exposure to and tissue distribution of per-and polyfluoroalkyl substances(PFASs)[J]. Science of the Total environment,2018, 636:1058-1069.
    [8] EVICH M G,DAVIS M J B,MCCORD J P,et al. Per-and polyfluoroalkyl substances in the environment[J]. Science,2022, 375(6580):9065.
    [9] GAGLIANO E,SGROI M,FALCIGLIA P P,et al. Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption:Role of PFAS chain length,effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020,171:115381.
    [10] WANG J,LIN Z,HE X,et al. Critical Review of Thermal Decomposition of Per-and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes [J]. Environmental Science & Technology,2022,56(9):5355-5370.
    [11] HUANG H, MA R, REN H. Scientific and technological innovations of wastewater treatment in China[J]. Frontiers of Environmental Science & Engineering,2024,18(6):72.
    [12] QU J,CHEN J. Pathways toward a pollution-free planet and challenges [J]. Frontiers of Environmental Science & Engineering,2024,18(6):67.
    [13] ALTARAWNEH M. A chemical kinetic model for the decomposition of perfluorinated sulfonic acids[J]. Chemosphere, 2021,263:128256.
    [14] XIAO F, SASI P C, YAO B, et al. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon [J]. Environmental Science & Technology Letters,2020,7(5):343-350.
    [15] WATANABE N,TAKATA M,TAKEMINE S,et al. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere[J]. Environmental Science and Pollution Research, 2018,25(8):7200-7205.
    [16] CLARA M, SCHARF S, WEISS S, et al. Emissions of perfluorinated alkylated substances(PFAS)from point sources— identification of relevant branches [J]. Water Science and Technology,2008,58(1):59-66.
    [17] WEBER N H,DIXON L J,STOCKENHUBER S P,et al. Thermal decomposition of PFOA: influence of reactor and reaction conditions on product formation [J]. Chemical Engineering Science,2023,278:118924.
    [18] SASI P C,ALINEZHAD A,YAO B,et al. Effect of granular activated carbon and other porous materials on thermal decomposition of per-and polyfluoroalkyl substances: Mechanisms and implications for water purification[J]. Water Research,2021,200:117271.
    [19] BLOTEVOGEL J,GIRAUD R J,RAPPé A K. Incinerability of PFOA and HFPO-DA: mechanisms, kinetics, and thermal stability ranking[J]. Chemical Engineering Journal,2023,457: 141235.
    [20] YAO B,SUN R,ALINEZHAD A,et al. The first quantitative investigation of compounds generated from PFAS, PFAScontaining aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes[J]. Journal of Hazardous Materials,2022,436:129313.
    [21] KUMAR R,DADA T K,WHELAN A,et al. Microbial and thermal treatment techniques for degradation of PFAS in biosolids:a focus on degradation mechanisms and pathways[J]. Journal of Hazardous Materials,2023,452:131212.
    [22] SøRMO E,CASTRO G,HUBERT M,et al. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis[J]. Journal of Hazardous Materials,2023,454:131447.
    [23] ABOUKHALIL C, CHERNYSHEVA L, MILLER A, et al. Enhancing the thermal mineralization of perfluorooctanesulfonate on granular activated carbon using alkali and alkaline-earth metal additives[J]. Environmental Science & Technology,2024,58(25):11162-11174.
    [24] ALINEZHAD A, CHALLA SASI P, ZHANG P, et al. An investigation of thermal air degradation and pyrolysis of per-and polyfluoroalkyl substances and aqueous film-forming foams in soil [J]. ACS ES&T Engineering,2022,2(2):198-209.
    [25] WANG F,LU X,LI X Y,et al. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment[J]. Environ SciTechnol,2015,49(9):5672-80.
    [26] XIAO F, SASI P C, YAO B, et al. Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon [J]. Environmental Science & Technology Letters,2020,7(5):343-350.
    [27] ADI M A, ALTARAWNEH M. Thermal decomposition of heptafluoropropylene-oxide-dimer acid (GenX) [J]. Chemosphere,2022,289:133118.
    [28] XU B,LIU S,ZHOU J L,et al. PFAS and their substitutes in groundwater:Occurrence,transformation and remediation[J]. Journal of Hazardous Materials,2021,412:125159.
    [29] ALTARAWNEH M,ALMATARNEH M H,DLUGOGORSKI B Z. Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration [J]. Chemosphere,2022,286:131685.
    [30] WANG F,LU X,LI X,et al. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment[J]. Environmental Science & Technology,2015,49(9):5672-5680.
    [31] NIU J,LIN H,XU J,et al. Electrochemical mineralization of perfluorocarboxylic acids(PFCAs)by Ce-doped modified porous nanocrystalline PbO2 film electrode[J]. Environmental Science & Technology,2012,46(18):10191-10198.
    [32] ELLIS D A,MARTIN J W,DE SILVA A O,et al. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids[J]. Environmental Science & Technology,2004,38(12):3316-3321.
    [33] SCHLEDERER F,MARTÍN-Hernández E,VANEECKHAUTE C. Ensuring safety standards in sewage sludge-derived biochar: impact of pyrolysis process temperature and carrier gas on micropollutant removal [J]. Journal of Environmental Management,2024,352:119964.
    [34] BAMDAD H, PAPARI S, MORESIDE E, et al. Hightemperature pyrolysis for elimination of per-and polyfluoroalkyl substances(PFAS)from biosolids[J]. Processes,2022,10(11): 2187.
    [35] KUNDU S,PATEL S,HALDER P,et al. Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and the application of biosolids derived biochar for the removal of PFASs from contaminated water[J]. Environmental Science: Water Research & Technology,2021,7(3):638-649.
    [36] WANG Z, ALINEZHAD A, SUN R, et al. Pre-and postapplication thermal treatment strategies for sorption enhancement and reactivation of biochars for removal of per-and polyfluoroalkyl substances from water [J]. ACS ES&T Engineering,2023,3(2):193-200.
    [37] WINCHELL L J,CULLEN J,ROSS J J,et al. Fate of biosolids‐ bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control[J]. Water Environment Research,2024,96(11):e11149.
    [38] WEST C P, BROWN H M, FEDICK P W. Molecular characterization of the thermal degradation of per-and polyfluoroalkyl substances in aqueous film-forming foams via temperature-programmed thermal desorption-pyrolysis-direct analysis in real time-mass spectrometry [J]. Environmental Science & Technology Letters,2023,10(4):308-315.
    [39] WEBER N H,DELVA C S,STOCKENHUBER S P,et al. Modeling and experimental study on the thermal decomposition of perfluorooctanesulfonic acid(PFOS)in an α-alumina reactor[J]. Industrial & Engineering Chemistry Research,2022,61(16): 5453-5463.
    [40] WANG J, SONG M, ABUSALLOUT I, et al. Thermal decomposition of two gaseous perfluorocarboxylic acids:products and mechanisms[J]. Environmental Science & Technology,2023, 57(15):6179-6187.
    [41] ALINEZHAD A,SHAO H,LITVANOVA K,et al. Mechanistic investigations of thermal decomposition of perfluoroalkyl ether carboxylic acids and short-chain perfluoroalkyl carboxylic acids [J]. Environmental Science & Technology,2023,57(23):8796-8807.
    [42] COX J, WRIGHT B, WRIGHT W. Thermal degradation of fluorine‐containing polymers. Part I. Degradation in vacuum[J]. Journal of Applied Polymer Science,1964,8(6):2935-2950.
    [43] NIU J,LIN H,GONG C,et al. Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid[J]. Environmental Science & Technology, 2013,47(24):14341-14349.
    [44] BLAKE P, TOMLINSON A. Thermal decomposition of fluoroacetic acid[J]. Journal of the Chemical Society B:Physical Organic,1971:1596-1597.
    [45] SINGH R K,FERNANDO S,BAYGI S F,et al. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process[J]. Environmental Science & Technology,2019,53(5):2731-2738.
    [46] SUN R, ALINEZHAD A, ALTARAWNEH M, et al. New insights into thermal degradation products of long-chain per-and polyfluoroalkyl substances (PFAS) and their mineralization enhancement using additives [J]. Environmental Science & Technology,2024,58(50):22417-22430.
    [47] SONMEZ BAGHIRZADE B,ZHANG Y,REUTHER J F,et al. Thermal regeneration of spent granular activated carbon presents an opportunity to break the forever PFAS cycle [J]. Environmental Science & Technology,2021,55(9):5608-5619.
    [48] MAZYCK D W,CANNON F S. Overcoming calcium catalysis during the thermal reactivation of granular activated carbon:Part I. Steam-curing plus ramped-temperature N2 treatment[J]. Carbon,2000,38(13):1785-1799.
    [49] JAFARINEJAD S,HE J,WANG D. Regeneration of biochars (pristine and modified/engineered)and economic analysis of their use in the removal of per-and polyfluoroalkyl substances(PFAS) from water/wastewater[J]. Frontiers of Environmental Science & Engineering,2025,19(2):1-13.
    [50] KHAN M Y,SO S,DA SILVA G. Decomposition kinetics of perfluorinated sulfonic acids [J]. Chemosphere,2020,238: 124615.
    [51] BISWAS S,WONG B M. Degradation of perfluorooctanoic acid on aluminum oxide surfaces:new mechanisms from Ab initio molecular dynamics simulations[J]. Environmental Science & Technology,2023,57(16):6695-6702.
    [52] AMéDURI B,HORI H. Recycling and the end of life assessment of fluoropolymers:recent developments,challenges and future trends[J]. Chemical Society Reviews,2023,52(13):4208-4247.
    [53] WANG F,LU X,SHIH K,et al. Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions [J]. Journal of Hazardous Materials,2011,192(3):1067-1071.
    [54] IKOMA T, ZHANG Q, SAITO F, et al. Radicals in the mechanochemical dechlorination of hazardous organochlorine compounds using CaO nanoparticles[J]. Bulletin of the Chemical Society of Japan,2001,74(12):2303-2309.
    [55] CHIESA M,GIAMELLO E,MURPHY D M,et al. Reductive activation of the nitrogen molecule at the surface of“electronrich”MgO and CaO. The N2-surface adsorbed radical ion[J]. The Journal of Physical Chemistry B,2001,105(2):497-505.
    [56] YANG L,CHEN Z,GOULT C A,et al. Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse[J]. Nature, 2025:1-7.
    [57] PATEL C, ANDRé -JOYAUX E, LEITCH J A, et al. Fluorochemicals from fluorspar via a phosphate-enabled mechanochemical process that bypasses HF[J]. Science,2023, 381(6655):302-306.
    [58] CHU C,MA L L,ALAWI H,et al. Mechanistic exploration of polytetrafluoroethylene thermal plasma gasification through multiscale simulation coupled with experimental validation[J]. Nature Communications,2024,15(1):1654.
    [59] LONG M,CHEN Y,SENFTLE T P,et al. Method of H2 transfer is vital for catalytic hydrodefluorination of perfluorooctanoic acid (PFOA)[J]. Environmental Science & Technology,2024,58(2): 1390-1398.
    [60] LI G,PENG M,HUANG Q,et al. A review on the recent mechanisms investigation of PFAS electrochemical oxidation degradation:mechanisms,DFT calculation,and pathways[J]. Frontiers in Environmental Engineering,2025(4):1568542.
    [61] KHAN M Y, SONG J, NARIMANI M, et al. Thermal decomposition mechanism and kinetics of perfluorooctanoic acid (PFOA)and other perfluorinated carboxylic acids:a theoretical study[J]. Environmental Science:Processes & Impacts,2022,24(12):2475-2487.
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  20
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-28
  • 录用日期:  2025-07-30
  • 修回日期:  2025-07-15

目录

    /

    返回文章
    返回