中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异源黑色素/石墨烯复合材料对微生物燃料电池产电性能的影响及机制研究

董琪琪 吴瑒 龙敏 郑雄 陈银广

董琪琪, 吴瑒, 龙敏, 郑雄, 陈银广. 异源黑色素/石墨烯复合材料对微生物燃料电池产电性能的影响及机制研究[J]. 环境工程, 2025, 43(8): 129-136. doi: 10.13205/j.hjgc.202508011
引用本文: 董琪琪, 吴瑒, 龙敏, 郑雄, 陈银广. 异源黑色素/石墨烯复合材料对微生物燃料电池产电性能的影响及机制研究[J]. 环境工程, 2025, 43(8): 129-136. doi: 10.13205/j.hjgc.202508011
DONG Qiqi, WU Yang, LONG Min, ZHENG Xiong, CHEN Yinguang. Effects and mechanisms of heterogeneous melanin/graphene composite materials on power generation performance of microbial fuel cells[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 129-136. doi: 10.13205/j.hjgc.202508011
Citation: DONG Qiqi, WU Yang, LONG Min, ZHENG Xiong, CHEN Yinguang. Effects and mechanisms of heterogeneous melanin/graphene composite materials on power generation performance of microbial fuel cells[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 129-136. doi: 10.13205/j.hjgc.202508011

异源黑色素/石墨烯复合材料对微生物燃料电池产电性能的影响及机制研究

doi: 10.13205/j.hjgc.202508011
基金项目: 

国家自然科学基金项目(52470057)

详细信息
    作者简介:

    董琪琪(2003—),女,硕士研究生,主要研究方向为城市污水生物处理与资源化利用。2431492@tongji.edu.cn

    通讯作者:

    郑雄(1985—),男,教授,主要研究方向为城市污水生物处理与资源化利用。xiongzheng@tongji.edu.cn

Effects and mechanisms of heterogeneous melanin/graphene composite materials on power generation performance of microbial fuel cells

  • 摘要: 微生物燃料电池(microbial fuel cell,MFC)作为一种新型清洁能源技术,其阴极电子传递效率是制约产电性能的关键因素之一。以黑色素为代表的氧化还原活性物质虽具有促进电子转移的潜力,但不同来源黑色素作为阴极催化剂,对MFC产电性能的影响及其作用机制尚未明确。为此,研究系统考察了生物源和化学源黑色素/石墨烯复合材料在MFC中的催化性能。结果表明:生物源黑色素较化学源黑色素表现出更优异的分散稳定性。与石墨烯复合时,尽管生物源黑色素/石墨烯复合材料的实际负载量较低,但其C—N键含量最高,且表面富集了Fe等有益微量元素。在不同碳源和温度条件下的性能评估中发现,以生物源黑色素/石墨烯复合材料为阴极催化剂的MFC表现出最佳的产电性能和环境适应性,在乙酸钠为碳源时最大输出电压达(0.254±0.003)V,较未修饰石墨烯和化学源黑色素/石墨烯复合材料分别提高了30.3%和33.7%。机理研究表明,生物源黑色素/石墨烯复合材料能够显著提升微生物细胞活力,增强微生物胞内的还原力和电子传递效率,从而实现MFC产电性能的显著提升。该研究为开发高效MFC阴极催化剂提供了新思路,同时也为深入理解电子传递过程中的关键影响因素奠定了理论基础。
  • [1] JIANG S T,LIU H Y,ZANG W X,et al. Bioanode boosts efficacy of chlorobenzenes-powered microbial fuel cell: Performance, kinetics, and mechanism [J]. Bioresource Technology,2024,405:130936.
    [2] WAN C Z,DUAN X F,HUANG Y. Molecular design of singleatom catalysts for oxygen reduction reaction[J]. Advanced Energy Materials,2020,10:1903815.
    [3] XIN S, SHEN J, LIU G, et al. Electricity generation and microbial community of single-chamber microbial fuel cells in response to Cu2O nanoparticles/reduced graphene oxide as cathode catalyst[J]. Chemical Engineering Journal,2020,380: 122446.
    [4] GOWTHAMI P,JUNG H Y,J,SADHASIVAM T,et al. A comprehensive review on microbial fuel cell technologies: Processes,utilization,and advanced developments in electrodes and membranes[J]. Journal of Cleaner Production,2019,221: 598-621.
    [5] SOUMYADEEP B,MANASWINI B. From single-chamber to multi-anodic microbial fuel cells: a review[J]. Journal of Environmental Management,2024,355:120465.
    [6] YUAN H,HOU Y,ABU-REESH I M,et al. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment:a review[J]. Materials Horizons,2016,3(5):382-401.
    [7] 唐新华,贾煜瑒,崔杨,等.铁硫氮共掺杂多孔碳阴极催化剂强化微生物燃料电池性能的研究[J].环境工程,2021,39(10): 163-170. TANG X H,JIA Y Y,CUI Y,et al. Enhancement of microbial fuel cell performance by Fe-S-N Co-Doped porous carbon cathode catalyst[J]. Environmental Engineering,2021,39(10): 163-170.
    [8] GOMES J, MATOS A, GMUREK M, et al. Ozone and photocatalytic processes for pathogens removal from water: a review[J]. Catalysts,2019,9:46.
    [9] LIU M H,XU,Q,MIAO Q Y,et al. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER[J]. Journal of Materials Chemistry A, 2022,10:228-233.
    [10] WU B,MENG H B,CHEN X B,et al. Structural modulation of nanographenes enabled by defects,size and doping for oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2025,64:e202415071.
    [11] HAN H,PARVEEN N,ANSARI S,et al. Electrochemically synthesized sulfur-doped graphene as a superior metal-free cathodic catalyst for the oxygen reduction reaction in microbial fuel cell [J]. RSC Advance,2016,6:103446-103454.
    [12] SONG W,YANG,H Y,LIU S,et al. Melanin:insights into structure, analysis, and biological activities for future development[J]. Journal of Materials Chemistry B,2023,11: 7528-7543.
    [13] 郭娜,潘帅,赵倩玉,等.细菌黑色素在生物电化学领域的研究进展[J].表面技术,2019,48(7):229-236. GUO N, PAN S, ZHAO Q Y, et al. Research progress of bacterial melanin in bioelectrochemistry[J]. Surface Technology, 2019,48(7):229-236.
    [14] MANIRETHAN V, BALAKRISHNAN R M. Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon [J]. Environmental Technology & Innovation,2020,20:101085.
    [15] JU K Y,LEE Y,LEE S,et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property [J]. BioMacromolecules,2011,12(3):625-632.
    [16] 鹿钦礼,李亮,刘金亮,等.微生物燃料电池的应用研究进展[J].环境工程,2019,37(8):95-100. LU Q L,LI L,LIU J L,et al. Research progress in application of microbial fuel cells[J]. Environmental Engineering,2019,37(8):95-100.
    [17] ZHANG Y W,GE J,WANG L,et al. Manageable N-doped graphene for high performance oxygen reduction reaction[J]. Scientific Reports,2013,3(1):2771.
    [18] LOVLEY D R,PHILLIPS E J. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology,1988,54(6).
    [19] SAN K, BENNETT G N, BERRÍOS-RIVERA S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in escherichia coli[J]. Metabolic engineering,2002,4:182-192.
    [20] LI J,LI S,TANG Y,et al. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER[J]. Chemical Communications,2015,51(13):2710-2713.
    [21] WANG Y, WANG Z, MA P, et al. Strong nanocomposite reinforcement effects in poly (vinyl alcohol) with melanin nanoparticles[J]. RSC Advances,2015,5:72691-72698.
    [22] MADHURIMA D,SHIVAM U,SIRSHENDU D. A facile method to estimate the effective membrane pore charge density through surface zeta potential measurement[J]. Journal of Membrane Science,2021,637:119655.
    [23] FENG C, CHAN P, HSING I M. Catalyzed microelectrode mediated by polypyrrole/Nafion (R) composite film for microfabricated fuel cell applications [J]. Electrochemistry Communications,2007(9):89-93.
    [24] YANG M,PAN X,ZHANG N,et al. A facile one-step way to anchor noble metal (Au,Ag,Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds[J]. Cryst Eng Comm,2013,15:6819.
    [25] MHAMANE D,RAMADAN W,FAWZY M,et al. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation[J]. Green Chemistry, 2011(13):1990-1996.
    [26] SANTORO C,SEROV A,GOKHALE R,et al. A family of FeN-C oxygen reduction electrocatalysts for microbial fuel cell (MFC)application:relationships between surface chemistry and performances[J]. Applied Catalysis B:Environmental,2017, 205:24-33.
    [27] 闫荣,雷欣,慕玉洁,等.后续碳源强化ANAMMOX-MFC系统脱氮产电调控策略[J].环境工程,2021,39(9):76-83. YAN R ,LEI X ,MU Y J ,et al. Control strategy of subsequent carbon source in ANAMMOX-MFC system for enhancement nitrogen removal ang power generation [J]. Environmental Engineering,2021,39(9):76-83.
    [28] LI M,ZHOU M,TIAN X,et al. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity[J]. Biotechnology Advances, 2018, 36(4): 1316-1327.
    [29] GENG B Y,CAO L Y,LI F,et al. Potential of Zymomonas mobilis as an electricity producer in ethanol production[J]. Biotechnology for Biofuels and Bioproducts,2020,36(13): 1-11.
    [30] ANWAR A,ALIA S A,MOHAMMAD S M. Microbial approach towards anode biofilm engineering enhances extracellular electron transfer for bioenergy production[J]. Journal of Environmental Management,2024,370:122696.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 录用日期:  2025-04-30
  • 修回日期:  2025-04-15

目录

    /

    返回文章
    返回