中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁矿物促腐殖化过程的化学机制及其碳负排潜力

孙淑慧 徐玺铠 徐梦瑶 邓航 汪华林 杨雪晶

孙淑慧, 徐玺铠, 徐梦瑶, 邓航, 汪华林, 杨雪晶. 铁矿物促腐殖化过程的化学机制及其碳负排潜力[J]. 环境工程, 2025, 43(8): 214-225. doi: 10.13205/j.hjgc.202508020
引用本文: 孙淑慧, 徐玺铠, 徐梦瑶, 邓航, 汪华林, 杨雪晶. 铁矿物促腐殖化过程的化学机制及其碳负排潜力[J]. 环境工程, 2025, 43(8): 214-225. doi: 10.13205/j.hjgc.202508020
SUN Shuhui, XU Xikai, XU Mengyao, DENG Hang, WANG Hualin, YANG Xuejing. Chemical mechanisms of iron mineral-facilitated humification and their potential toward carbon-negative emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 214-225. doi: 10.13205/j.hjgc.202508020
Citation: SUN Shuhui, XU Xikai, XU Mengyao, DENG Hang, WANG Hualin, YANG Xuejing. Chemical mechanisms of iron mineral-facilitated humification and their potential toward carbon-negative emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(8): 214-225. doi: 10.13205/j.hjgc.202508020

铁矿物促腐殖化过程的化学机制及其碳负排潜力

doi: 10.13205/j.hjgc.202508020
基金项目: 

国家自然科学基金项目“促腐殖化过程的化学机制及其多介质环境特征研究”(22406057);国家资助博士后研究人员计划(GZC20240468);国家重点研发计划“地下水污染物跨介质传输观测与多界面阻控技术”(2024YFC3712700)

详细信息
    作者简介:

    孙淑慧(1996—),女,博士后,主要研究方向为氧化偶联促腐殖化。shhsun@ecust.edu.cn

    通讯作者:

    杨雪晶(1986—),女,教授,主要研究方向为“水-能源-食物”耦合(InFEWs)的低碳制造、污染控制化学。xj.yang@ecust.edu.cn

Chemical mechanisms of iron mineral-facilitated humification and their potential toward carbon-negative emissions

  • 摘要: 随着全球气候变化的加剧,一系列碳负排技术被提出。然而,现有技术主要围绕CO2的一次固定。以偶联反应为代表的腐殖化作用长期以来在土壤和沉积物形成过程中扮演着重要角色,其对有机质和污染物的锁定作用有望成为碳固定、碳负排的核心环节,将有机残体转化为稳定的腐殖质,从而影响碳的储存和综合气候效应。铁矿物在这一过程中发挥着重要作用,其通过与有机碳的相互作用,促进腐殖质的形成,进而形成稳定的有机-无机复合体,促进有机碳的长期固存。综述了铁矿物促腐殖化的化学机制及其对碳循环的影响,探讨了腐殖化过程的关键反应路径,包括多酚途径、美拉德途径及其综合多酚-美拉德途径,并分析了铁矿物在土壤有机碳固存中的作用。最后,讨论了基于铁矿物促腐殖化的负碳排技术的开发,以期推动偶联促腐殖化技术在环境修复和碳中和领域的广泛应用。
  • [1] MEYER L. Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, climate change 2007:The physical science basis[M]. IPCC,2007.
    [2] LEE H,CALVIN K,DASGUPTA D,et al. Climate change 2023:synthesis report. Contribution of Working Groups I,II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC,2023.
    [3] MYNENI S C B,BROWN J,MARTINEZ G,et al. Imaging of humic substance macromolecular structures in water and soils[J]. Science,1999,286(5443):1335-1337.
    [4] PACHAURI R K,ALLEN M R,BARROS V R,et al. Climate change 2014 synthesis report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC. 2014.
    [5] BURDIGE D J. Preservation of organic matter in marine sediments:controls,mechanisms,and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews,2007,107(2): 467-485.
    [6] WANG K,BASTOS A,CIAIS P,et al. Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability[J]. Nature Communications,2022,13(1):3469.
    [7] STEVENSON R. Negative emissions technologies and reliable sequestration:a research agenda[J]. Integrated environmental assessment and management,2021,17(2):488-489.
    [8] SMITH S,GEDEN O,GIDDEN M,et al. The state of carbon dioxide removal 2024[R]. 2nd Edition. 2024.
    [9] BEDNAR J,HöGLUND R,MöLLERSTEN K,et al. The role of carbon dioxide removal in contributing to the long-term goal of the Paris Agreement[R]. 2023.
    [10] MINX J C,LAMB W F,CALLAGHAN M W,et al. Negative emissions—Part 1: Research landscape and synthesis [J]. Environmental Research Letters,2018,13(6):063001.
    [11] LIU Q,HE X,WANG K,LI D,et al. Biochar drives humus formation during composting by regulating the specialized metabolic features of microbiome[J]. Chemical Engineering Journal,2023,458,141380.
    [12] DENG Y,MAO H,WANG X,et al. Enhancing humification and digestate maturity in high-solids anaerobic digestion of agricultural wastes using biochar[J]. Water Research,2025, 287:124378.
    [13] MUHAMMAD A H,KHALID A,AMRO M E. Which bioenergy with carbon capture and storage(BECCS)pathways can provide net-negative emissions?[J]. International Journal of Greenhouse Gas Control,2024,135:104164.
    [14] DANG Y,REN X,DING Z,et al. Effects of forest-floor litter manipulations on soil organic carbon pools in a temperate mixed forest:a stoichiometric perspective[J]. Biogeochemistry,2025, 168:70.
    [15] GAUCHER Y, TANAK K, JOHANSSON D J A, et al. Leveraging ecosystems responses to enhanced rock weathering in mitigation scenarios[J]. Nature Communications, 2025, 16, 3021.
    [16] JIANG H,HUTCHINS D A,ZHANG H,et al. Complexities of regulating climate by promoting marine primary production with ocean iron fertilization[J]. Earth-Science Reviews,2024,249:104675.
    [17] RAZZAK S A,ALI S A M,HOSSAIN M M,et al. Biological CO2 fixation with production of microalgae in wastewater -A review [J]. Renewable and Sustainable Energy Reviews,2017,76: 379-390.
    [18] JIANG H,YI Z,CHEN Y,et al. Exogenous laccase drives synergistic immobilization of heavy metals inagriculture waste and soil composting: Deciphering strawdegradation-humificationmicrobial interactions[J]. Chemical Engineering Journal,2025, 515:163595.
    [19] WANG S,WANG Y,HE X,et al. Degradation or humification: rethinking strategies to attenuate organic pollutants[J]. Trends in Biotechnology,2022,40(9):1061-1072.
    [20] YAMAMOTO S, ISHIWATARI R. A study of the formation mechanism of sedimentary humic substances—II. Protein-based melanoidin model[J]. Organic Geochemistry,1989,14(5): 479-489.
    [21] HARDIE A G,DYNES J J,KOZAK L M,et al. The role of glucose in abiotic humification pathways as catalyzed by birnessite [J]. Journal of Molecular Catalysis A:Chemical,2009,308(1):114-126.
    [22] MOORE O W,CURTI L,WOULDS C,et al. Long-term organic carbon preservation enhanced by iron and manganese [J]. Nature,2023,621(7978):312-317.
    [23] WU B,TANG X,SONG Z,et al. Chemoautotrophic carbon fixation favors iron-bound organic carbon formation in estuarine and coastal sediments[J]. Environmental Science & Technology, 2025,59(25):12642-12655.
    [24] HäTTENSCHWILER S, VITOUSEK P M. The role of polyphenols in terrestrial ecosystem nutrient cycling[J]. Trends in Ecology & Evolution,2000,15(6):238-243.
    [25] HäTTENSCHWILER S, HAGERMAN A, VITOUSEK P. Polyphenols in litter from tropical montane forests across a wide range in soil fertility[J]. Biogeochemistry, 2003, 64(1): 129-148.
    [26] DEC J,HAIDER K,BOLLAG J M. Release of substituents from phenolic compounds during oxidative coupling reactions[J]. Chemosphere,2003,52(3):549-556.
    [27] STEVENSON F. Humus chemistry: Genesis, composition, reactions[M]. New York:John Wiley & Sons,1994.
    [28] PAL S,BOLLAG J-M,HUANG P M. Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions[J]. Soil Biology and Biochemistry, 1994,26(7):813-820.
    [29] JOKIC A, WANG M C, LIU C, et al. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature:the role of δ -MnO 2[J]. Organic Geochemistry,2004,35(6):747-762.
    [30] YAYLAYAN V A Classification of the Maillard reaction: A conceptual approach[J]. Trends in Food Science & Technology, 1997,8(1):13-18.
    [31] WANG M,HUANG P. Cleavage of 14C-labeled glycine and its polycondensation with pyrogallol as catalyzed by birnessite[J]. Geoderma,2005,124(3/4):415-426.
    [32] SIMPSON A J, KINGERY W L, HATCHER P G. The identification of plant derived structures in humic materials using three-dimensional nmr spectroscopy. article[J]. Environmental Science & Technology,2003,37(2):337-342.
    [33] KIEM R, KÖGEL-KNABNER I. Contribution of lignin and polysaccharides to the refractory carbon pool in c-depleted arable soils[J]. Soil Biology & Biochemistry,2003,35(1):101-118.
    [34] AIKEN G R. Humic substances in soil,sediment,and water: geochemistry,isolation,and characterization[J]. Soil Science, 1985,142(5).
    [35] HIDALGO F J,ZAMORA R. The role of lipids in nonenzymatic browning[J]. Grasas Y Aceites,2000,51(1):35-49.
    [36] 吴启堂.环境土壤学[M].北京:中国农业出版社,2011. WU Q T. Environmental soil science [M]. Beijing: China Agriculture Press,2011.
    [37] LIANG C,SCHIMEL J P,JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology,2017,2(8):17105.
    [38] YOON H Y,JEONG H J,CHA J-Y,et al. Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters[J]. Science of the Total Environment, 2020, 725: 138409.
    [39] GAO X,TAN W,ZHAO Y,et al. Diversity in the mechanisms of humin formation during composting with different materials. article[J]. Environmental Science & Technology,2019,53(7): 3653-3662.
    [40] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: the new view [J]. Environmental Science & Technology,2005,39(23):9009–9015.
    [41] DIALLO M S,SIMPSON A,GASSMAN P,et al. 3-d structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. chelsea soil humic acid. article[J]. Environmental Science & Technology,2003,37(9):1783-1793.
    [42] HE H,LIU J,SHU Z,et al. Microbially driven iron cycling facilitates organic carbon accrual in decadal biochar-amended soil [J]. Environmental Science & Technology,2024,58(28): 12430-12440.
    [43] HORTENSTEINER S. Chlorophyll degradation during senescence [J]. The Annual Review of Plant Biology,2006,57:55-77.
    [44] 刘亚龙,王萍,汪景宽.土壤团聚体的形成和稳定机制:研究进展与展望[J].土壤学报,2023,60(3):627-643.. LIU Y L,WANG P,WANG J K. Formation and stabilization mechanisms of soil aggregates:research progress and prospects [J]. Acta Pedologica Sinica,2023,60(3):627-643.
    [45] 王璐莹,秦雷,吕宪国,等.铁促进土壤有机碳累积作用研究进展[J].土壤学报,2018,55(5):1041-1050.WANG L Y,QIN L,LÜ X G,et al. Research progress on the role of iron in promoting soil organic carbon accumulation[J]. Acta Pedologica Sinica,2018,55(5):1041-1050.
    [46] CHEN C,HALL S J,COWARD E,et al. Iron-mediated organic matter decomposition in humid soils can counteract protection. article[J]. Nature Communications,2020,11(1).
    [47] XUE S,YI X,PENG J,et al. Fulvic acid enhances nitrogen fixation and retention in paddy soils through microbial-coupled carbon and nitrogen cycling. article[J]. Environmental Science & Technology,2024,58(42):18777-18787.
    [48] XIAOKUN H, A. T, M K. Redox fluctuations control the stabilization of iron-bound organic carbon[J]. Geochimica et Cosmochimica Acta,2022,325:87-101.
    [49] DONG H,ZENG Q,SHENG Y,et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth & Environment,2023(4):659-673.
    [50] WANG S,GAO W,MA Z,et al. Iron mineral type controls organic matter stability and priming in paddy soil under anaerobic conditions[J]. Soil Biology and Biochemistry, 2024, 197: 109518.
    [51] LALONDE K. Preservation of organic matter in sediments promoted by iron[J]. Nature 2012,483(7388):198-200.
    [52] WU J,LI H,ZHANG Q. Enhanced carbon sequestration in rice paddies through iron-mineral interactions[J]. Soil Biology and Biochemistry 2023,185:108972.
    [53] KLEBER M, EUSTERHUES K, KEILUWEIT M. Mineralorganic associations:formation,properties,and relevance for soil carbon storage[J]. Annual Review of Earth and Planetary Sciences 2021,49:333-358.
    [54] CHEN Y,DONG L,SUI W,et al. Cycling and persistence of iron-bound organic carbon in subseafloor sediments[J]. Nature Communications,2024,15:6370.
    [55] WU S L,DALAL R C,FU W,et al. Dynamics of organic carbon stabilization by minerals during pedogenesis of mine tailings:a conceptual model[J]. ACS Earth and Space Chemistry 2025,9(5):991-1004.
    [56] LI S,AO C,WU M,et al. Geochemical behavior of engineered nanoparticles under biotic and abiotic processes[J]. Soil and Environmental Health,2025(3):100145.
    [57] LI Q,LI L,DU H,et al. Soil conditioners promote the formation of Fe-bound organic carbon and its stability[J]. Journal of Environmental Management,2024,349:119480.
    [58] WANG X,ZHANG H,CAO D,et al. Microbial carbon and phosphorus metabolism regulated by C:N:P stoichiometry stimulates organic carbon accumulation in agricultural soils[J]. Soil and Tillage Research,2024,242:106152.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 录用日期:  2025-06-09
  • 修回日期:  2025-05-29

目录

    /

    返回文章
    返回