中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双物化耦合OHO生物工艺的协同优化及水处理增效机制:以焦化废水为例

王晴 成晓倩 柯雄 陈啊聪 陈尧 杨璇 邱光磊 韦朝海

王晴, 成晓倩, 柯雄, 陈啊聪, 陈尧, 杨璇, 邱光磊, 韦朝海. 双物化耦合OHO生物工艺的协同优化及水处理增效机制:以焦化废水为例[J]. 环境工程, 2025, 43(9): 29-38. doi: 10.13205/j.hjgc.202509004
引用本文: 王晴, 成晓倩, 柯雄, 陈啊聪, 陈尧, 杨璇, 邱光磊, 韦朝海. 双物化耦合OHO生物工艺的协同优化及水处理增效机制:以焦化废水为例[J]. 环境工程, 2025, 43(9): 29-38. doi: 10.13205/j.hjgc.202509004
WANG Qing, CHENG Xiaoqian, KE Xiong, CHEN Acong, CHEN Yao, YANG Xuan, QIU Guanglei, WEI Chaohai. Synergistic optimization and efficiency enhancement mechanisms of pre- and post-physicochemical coupled OHO biological treatment: a case study on coking wastewater[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 29-38. doi: 10.13205/j.hjgc.202509004
Citation: WANG Qing, CHENG Xiaoqian, KE Xiong, CHEN Acong, CHEN Yao, YANG Xuan, QIU Guanglei, WEI Chaohai. Synergistic optimization and efficiency enhancement mechanisms of pre- and post-physicochemical coupled OHO biological treatment: a case study on coking wastewater[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 29-38. doi: 10.13205/j.hjgc.202509004

双物化耦合OHO生物工艺的协同优化及水处理增效机制:以焦化废水为例

doi: 10.13205/j.hjgc.202509004
基金项目: 

国家重点研发计划“低碳约束下沿长江工业园区废水近零排放技术与示范”(2023YFC3207005)

详细信息
    作者简介:

    王晴(2001—),女,硕士研究生,主要研究方向为污水资源化利用。2431687901@qq.com

    通讯作者:

    韦朝海(1962—),男,博士,教授,主要研究方向为水污染控制理论与技术。cechwei@scut.edu.cn

Synergistic optimization and efficiency enhancement mechanisms of pre- and post-physicochemical coupled OHO biological treatment: a case study on coking wastewater

  • 摘要: 当前在工业废水处理中普遍存在能源消耗高的问题,节能降耗和资源回收已成为关键的应对策略。对此,以焦化废水为研究对象,通过双物化耦合OHO生物工艺平台,寻求资源化与污染控制协同的新途径。研究表明:亚铁盐在前物化单元中表现出优越的CN-和S2-去除能力,聚合硫酸铁(PFS)与活性炭(AC)对生物出水表现出高效净化效果。借助相关性分析耦合模型优化前物化单元的操作条件,将FeSO4·7H2O的投加量降低了120 mg/L。采用响应曲面分析,分别将AC和PFS的投加量减少了130,100 mg/L。同时结合污泥逆流回用策略,在工程实践中发现优化后出水COD、TN、CN-、S2-的浓度分别从原水的(3750±12),(300±28),(26.7±2.4),(143±15) mg/L降低到(44.6±8.0),(15.7±2.5),(0.12±0.02),(0.08±0.01) mg/L,实现了污染物的深度减排。同时,与传统运行模式比较,运行费用节省了2.31 元/m3,具有显著经济效益。结果表明:通过赋予各单元在整体系统中的特定角色和功能定义,挖掘不同处理阶段的深度耦合机制,可以实现废水处理系统工程的优化运行目标。
  • [1] KONG Q P,WU H Z,LIU L,et al. Solubilization of polycyclic aromatic hydrocarbons(PAHs)with phenol in coking wastewater treatment system:Interaction and engineering significance[J]. Science of The Total Environment,2018,628/629:467-473.
    [2] XING R,ZHENG Z Y,WEN D H. Comparison between UV and VUV photolysis for the pre-and post-treatment of coking wastewater[J]. Journal of Environmental Sciences,2015,29:45-50.
    [3] HE X G,KE X,WEI T,et al. Process energy and material consumption determined by reaction sequence:from AAO to OHO[J]. Water,2024,16(13):1796.
    [4] WEI C,LI Z M,PAN J X,et al. An oxic–hydrolytic–oxic process at the nexus of sludge spatial segmentation,microbial functionality,and pollutants removal in the treatment of coking wastewater[J]. ACS ES &T Water,2021,1(5):1252-1262.
    [5] ZHANG H,WEI C,CHEN A C,et al. Pre-aerobic treatment and dissolved oxygen regulation in full-scale aerobic-hydrolysis and denitrification-aerobic process for achieving simultaneous detoxification and nitrification of coking wastewater[J]. Bioresource Technology,2025,416:131754.
    [6] ZHAO C,ZHOU J,YAN Y,et al. Application of coagulation/flocculation in oily wastewater treatment:a review[J]. Science of The Total Environment,2021,765:142795.
    [7] CHEN A C,GUAN X H,PANG Z J,et al. Catalytic oxidation of biorefractory cyanide-containing coking wastewater by deconjugation effect of bimetal copper-loaded activated carbon[J]. Journal of Environmental Chemical Engineering,2023,11(6):111283.
    [8] BERISTAIN-MONTIEL L,MARTíNEZ-HERNÁNDEZ S,CUERVO-LÓPEZ F D M,et al. Dynamics of a microbial community exposed to several concentrations of 2-chlorophenol in an anaerobic sequencing batch reactor[J]. Environmental Technology,2015,36(14):1776-1784.
    [9] SUN G X,ZHANG Y,GAO Y X,et al. Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology:performance,mechanism,and full-scale application[J]. Water Research,2020,173:115517.
    [10] GARCIA-RODRIGUEZ O,LEE Y Y,OLVERA-VARGAS H,et al. Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode[J]. Electrochimica Acta,2018,276:12-20.
    [11] OBOTEY E E,RATHILAL S. Membrane technologies in wastewater treatment:a review[J]. Membranes,2020,10(5):89.
    [12] JIA C C. Research on physicochemical synergy technology and pollutant removal mechanism of biological effluent of coking wastewater[J]. Shanxi Chemical Industry,2024,44(6):239-241. 贾成成. 焦化废水生物出水物化协同技术及污染物去除机制研究[J]. 山西化工,2024,44(6):239-241.
    [13] ZHOU H T,WEI C H,ZHANG F Z,et al. A comprehensive evaluation method for sludge pyrolysis and adsorption process in the treatment of coking wastewater[J]. Journal of Environmental Management,2019,235:423-431.
    [14] SHUAI W,WU Y L,HU Y,et al. Research on activated carben adsorption of biologically treated coking wastewater and its condition optimization[J]. Chinese Journal of Environmental Engineering,2010,4(6):1201-1207. 帅伟,吴艳林,胡芸,等. 焦化废水生物处理尾水的活性炭吸附及条件优化研究[J]. 环境工程学报,2010,4(6):1201-1207.
    [15] FAYYAZ SHAHANDASHTY B,FALLAH N,SHAMSI M,et al. Evaluation of enhanced chemical coagulation method for a case study on colloidal liquid particle in wastewater treatment:statistical optimization analysis and implementation of machine learning[J]. Journal of Environmental Management,2024,370:122345.
    [16] WANG X S,HUANG F,CHENG Y H. Computational performance optimization of support vector machine based on support vectors[J]. Neurocomputing,2016,211:66-71.
    [17] SINGH B,KUMAR P. Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant:optimization of process parameters using response surface methodology(RSM)[J]. Journal of Water Process Engineering,2020,36:101317.
    [18] MENSAH-AKUTTEH H,BUAMAH R,WIAFE S,et al. Optimizing coagulation–flocculation processes with aluminium coagulation using response surface methods[J]. Applied Water Science,2022,12(8):188.
    [19] OCKULY R A,WEESE M L,SMUCKER B J,et al. Response surface experiments:a meta-analysis[J]. Chemometrics and Intelligent Laboratory Systems,2017,164:64-75.
    [20] GILCREAS F W. Standard methods for the examination of water and waste water[J]. American journal of public health and the nation's health,1966,56(3):387-388.
    [21] YU X B,XU R H,WEI C H,et al. Removal of cyanide compounds from coking wastewater by ferrous sulfate:Improvement of biodegradability[J]. Journal of Hazardous Materials,2016,302:468-474.
    [22] LIU X L,YIN H L,ZHAO J,et al. Understanding the coagulation mechanism and floc properties induced by Fe(VI)and FeCl3:population balance modeling[J]. Water Science and Technology,2021,83(10):2377-2388.
    [23] JOSHI D R,ZHANG Y,GAO Y X,et al. Biotransformation of nitrogen-and sulfur-containing pollutants during coking wastewater treatment:correspondence of performance to microbial community functional structure[J]. Water Research,2017,121:338-348.
    [24] CHEN A C,GUAN X H,PANG Z J,et al. Function and direction of cyanide in coking wastewater:from water treatment to environmental migration[J]. ACS ES &T Water,2023,3(12):3980-3991.
    [25] CHEN Y,LI Z M,QIU G L,et al. The process selection and the mechanism of ozonation-coagulation-adsorption for post-physicochemical treatment of coking wastewater bio-effluent[J]. Acta Scientiae Circumstantiae,2022,42(11):1-11. 陈颖,李泽敏,邱光磊,等. 焦化废水后物化处理的臭氧-混凝-吸附原理选择与协同机制[J]. 环境科学学报,2022,42(11):1-11.
    [26] WEI C,WU H P,KONG Q P,et al. Residual chemical oxygen demand(COD)fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management,2019,246:324-333.
  • 加载中
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 网络出版日期:  2025-11-05
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回