中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污水处理系统中噬菌体对抗生素抗性基因传播影响的研究进展

林彦含 包芮齐 付婧怡 陈乐怡 陈红

林彦含, 包芮齐, 付婧怡, 陈乐怡, 陈红. 污水处理系统中噬菌体对抗生素抗性基因传播影响的研究进展[J]. 环境工程, 2025, 43(9): 107-118. doi: 10.13205/j.hjgc.202509012
引用本文: 林彦含, 包芮齐, 付婧怡, 陈乐怡, 陈红. 污水处理系统中噬菌体对抗生素抗性基因传播影响的研究进展[J]. 环境工程, 2025, 43(9): 107-118. doi: 10.13205/j.hjgc.202509012
LIN Yanhan, BAO Ruiqi, FU Jingyi, CHEN Leyi, CHEN Hong. Role of bacteriophages in spread of antibiotic resistance genes in wastewater treatment systems: a review[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 107-118. doi: 10.13205/j.hjgc.202509012
Citation: LIN Yanhan, BAO Ruiqi, FU Jingyi, CHEN Leyi, CHEN Hong. Role of bacteriophages in spread of antibiotic resistance genes in wastewater treatment systems: a review[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 107-118. doi: 10.13205/j.hjgc.202509012

污水处理系统中噬菌体对抗生素抗性基因传播影响的研究进展

doi: 10.13205/j.hjgc.202509012
基金项目: 

国家自然基金科学项目(W2411031);浙江省自然科学基金联合基金资助项目(LZJWZ23E090007)

详细信息
    作者简介:

    林彦含(2000—),女,硕士研究生,主要研究方向为环境微生物。linyanhan@zju.edu.cn

    通讯作者:

    陈红(1969—),女,教授,主要研究方向为新污染物控制技术、环境微生物耐药及风险。chen_hong@zju.edu.cn

Role of bacteriophages in spread of antibiotic resistance genes in wastewater treatment systems: a review

  • 摘要: 抗生素耐药性传播已成为全球公共卫生领域的重大挑战。污水处理系统作为抗生素抗性基因(antibiotic resistance genes, ARGs)的重要储存库和传播节点,其微生物生态过程备受关注。噬菌体作为细菌病毒和潜在的基因转移载体,在ARGs传播中发挥着双重作用,其通过裂解作用直接清除耐药菌的同时,可通过转导机制促进ARGs的水平转移。这种矛盾性使得阐明噬菌体调控ARGs传播机制成为环境微生物学研究的核心问题之一。采用文献计量学方法,系统分析了1980—2024年间全球相关研究文献,重点探讨了污水处理系统中噬菌体介导ARGs传播的作用机制,为制定ARGs的精准防控策略提供理论依据。
  • [1] NAGHAVI M,VOLLSET S E,IKUTA K S,et al. Global burden of bacterial antimicrobial resistance in 2019:a systematic analysis[J]. The Lancet,2022,399:629-655.
    [2] WANG S,MA X,LIU Y,et al. Fate of antibiotics,antibiotic-resistant bacteria,and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants[J]. Bioresource Technology,2020,302:122825.
    [3] FANG H,WANG H,CAI L,et al. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey[J]. Environmental Science & Technology,2015,49(2):1095-1104.
    [4] CELIA M. Assessing the risk of antibiotic resistance transmission from the environment to humans:non-direct proportionality between abundance and risk[J]. Trends in Microbiology,2017,25(3):173-181.
    [5] BARR J J,SLATER F R,FUKUSHIMA T,et al. Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge[J]. FEMS Microbiology Ecology,2010,74(3):631-642.
    [6] SHAPIRO O H,KUSHMARO A. Bacteriophage ecology in environmental biotechnology processes[J]. Current Opinion in Biotechnology,2011,22(3):449-455.
    [7] FEINER R,ARGOV T,RABINOVICH L,et al. A new perspective on lysogeny:prophages as active regulatory switches of bacteria[J]. Nature Reviews Microbiology,2015,13(10):641-650.
    [8] RUAN C,RAMONEDA J,KAN A,et al. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance[J]. Nature Communications,2024,15(1):1-12.
    [9] ARIA M,CUCCURULLO C. bibliometrix:an R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics,2017,11(4):959-975.
    [10] SUTTLE C A. Viruses in the sea[J]. Nature,2005,437(7057):356-361.
    [11] LIAN K,LIU F,LI Y,et al. Environmental gradients shape microbiome assembly and stability in the East China sea[J]. Environmental Research,2023,238:1-14.
    [12] ADRIAENSSENS E M,KRAMER R,VAN GOETHEM M W,et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics[J]. Microbiome,2017,5(1):1-14.
    [13] SHKOPOROV A N,CLOONEY A G,SUTTON T D S,et al. The human gut virome is highly diverse,stable,and individual specific[J]. Cell Host & Microbe,2019,26(4):527-541.
    [14] JIAN H,YI Y,WANG J,et al. Diversity and distribution of viruses inhabiting the deepest ocean on Earth[J]. The ISME Journal,2021,15(10):3094-3110.
    [15] ZHAO J,LI B,LV P,et al. Distribution of antibiotic resistance genes and their association with bacteria and viruses in decentralized sewage treatment facilities[J]. Frontiers of Environmental Science & Engineering,2022,16(3):1-14.
    [16] PETROVICH M L,ZILBERMAN A,KAPLAN A,et al. Microbial and viral communities and their antibiotic resistance genes throughout a hospital wastewater treatment system[J]. Frontiers in Microbiology,2020,11:1-13.
    [17] LIU W,XU C,LI T,et al. Temporal dynamics and contribution of phage community to the prevalence of antibiotic resistance genes in a full-scale sludge anaerobic digestion plant[J]. Environmental Science & Technology,2024,58(14):6296-6304.
    [18] HOWARD-VARONA C,HARGREAVES K R,ABEDON S T,et al. Lysogeny in nature:mechanisms,impact and ecology of temperate phages[J]. The ISME Journal,2017,11(7):1511-1520.
    [19] POPA O,LANDAN G,DAGAN T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction[J]. The ISME Journal,2017,11(2):543-554.
    [20] TOUCHON M,MOURA De Sousa J A,ROCHA E P. Embracing the enemy:the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer[J]. Current Opinion in Microbiology,2017,38:66-73.
    [21] CHIANG Y N,PENADÉS J R,CHEN J. Genetic transduction by phages and chromosomal islands:The new and noncanonical[J]. PLOS Pathogens,2019,15(8):1-7.
    [22] THOMPSON L R,ZENG Q,KELLY L,et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proceedings of the National Academy of Sciences,2011,108(39):757-764.
    [23] SHI L D,DONG X,LIU Z,et al. A mixed blessing of viruses in wastewater treatment plants[J]. Water Research,2022,215:1-12.
    [24] YUAN L,JU F. Potential auxiliary metabolic capabilities and activities reveal biochemical impacts of viruses in municipal wastewater treatment plants[J]. Environmental Science & Technology,2023,57(13):5485-5498.
    [25] PIRSAHEB M,MOHAMADI M,MANSOURI A M,et al. Process modeling and optimization of biological removal of carbon,nitrogen and phosphorus from hospital wastewater in a continuous feeding & intermittent discharge(CFID)bioreactor[J]. Korean Journal of Chemical Engineering,2015,32(7):1340-1353.
    [26] SANDER M,SCHMIEGER H. Method for host-independent detection of generalized transducing bacteriophages in natural habitats[J]. Applied and Environmental Microbiology,2001,67(4):1490-1493.
    [27] MAGANHA DE ALMEIDA KUMLIEN A C,BORREGO C M,BALCÁZAR J L. Antimicrobial resistance and bacteriophages:an overlooked intersection in water disinfection[J]. Trends in Microbiology,2021,29(6):517-527.
    [28] BALCAZAR J L. Bacteriophages as vehicles for antibiotic resistance genes in the environment[J]. PLOS Pathogens,2014,10(7):1-4.
    [29] FILLOL-SALOM A,BACIGALUPE R,HUMPHREY S,et al. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22[J]. Nature Communications,2021,12(1):1-12.
    [30] KENZAKA T,TANI K,SAKOTANI A,et al. High-frequency phage-mediated gene transfer among escherichia coli cells,determined at the single-cell level[J]. Applied and Environmental Microbiology,2007,73(10):3291-3299.
    [31] CHEN J,QUILES-PUCHALT N,CHIANG Y N,et al. Genome hypermobility by lateral transduction[J]. Science,2018,362(6411):207-212.
    [32] ZHANG Y,GUO Y,QIU T,et al. Bacteriophages:Underestimated vehicles of antibiotic resistance genes in the soil[J]. Frontiers in Microbiology,2022,13:1-12.
    [33] LIN Z,ZHOU Z,SHUAI X,et al. Landscape of plasmids encoding β-lactamases in disinfection residual Enterobacteriaceae from wastewater treatment plants[J]. Water Research,2024,255:1-11.
    [34] ZHU L,YUAN L,SHUAI X Y,et al. Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems[J]. Water Research,2023,231:1-11.
    [35] LEKUNBERRI I,VILLAGRASA M,BALCÁZAR J L,et al. Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges[J]. Science of The Total Environment,2017,601/602:206-209.
    [36] CALERO-CÁCERES W,MELGAREJO A,COLOMER-LLUCH M,et al. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions[J]. Environmental Science & Technology,2014,48(13):7602-7611.
    [37] YANG Y,SHI W,LU S Y,et al. Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan,China[J]. Science of The Total Environment,2018,626:835-841.
    [38] ROSS J,TOPP E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids,and evidence for potential transduction[J]. Applied and Environmental Microbiology,2015,81(22):7905-7913.
    [39] DEBROAS D,SIGURET C. Viruses as key reservoirs of antibiotic resistance genes in the environment[J]. The ISME Journal,2019,13(11):2856-2867.
    [40] BROWN-JAQUE M,CALERO-CÁCERES W,MUNIESA M. Transfer of antibiotic-resistance genes via phage-related mobile elements[J]. Plasmid,2015,79:1-7.
    [41] WANG J,CHU L,WOJNÁROVITS L,et al. Occurrence and fate of antibiotics,antibiotic resistant genes(ARGs)and antibiotic resistant bacteria(ARB)in municipal wastewater treatment plant:An overview[J]. Science of The Total Environment,2020,744:1-11.
    [42] SHUAI X,ZHOU Z,BA X,et al. Bacteriophages:vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems?[J]. Water Research,2024,248:1-10.
    [43] LI X,CHEN T,REN Q,et al. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs[J]. Science of The Total Environment,2024,926:1-10.
    [44] CHEN T,MO C,YUAN Y,et al. Short-,long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment[J]. Journal of Hazardous Materials,2024,468:1-10.
    [45] YANG Y,XING S,CHEN Y,et al. Profiles of bacteria/phage-comediated ARGs in pig farm wastewater treatment plants in China:Association with mobile genetic elements,bacterial communities and environmental factors[J]. Journal of Hazardous Materials,2021,404:1-11.
    [46] WANG M,XIONG W,LIU P,et al. Metagenomic insights into the contribution of phages to antibiotic resistance in water samples related to swine feedlot wastewater treatment[J]. Frontiers in Microbiology,2018,9:1-10.
    [47] KANG Y,WANG J,WANG Y,et al. Profiles of phage in global hospital wastewater:association with microbial hosts,antibiotic resistance genes,metal resistance genes,and mobile genetic elements[J]. Science of the Total Environment,2024,926:1-13.
    [48] LI Z,GUO X,LIU B,et al. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants[J]. Water Research,2024,253:121289.
    [49] PIRES J,SANTOS R,MONTEIRO S. Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters[J]. Science of The Total Environment,2023,892:1-8.
    [50] MAIQUES E,ÚBEDA C,CAMPOY S,et al. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus[J]. Journal of Bacteriology,2006,188(7):2726-2729.
    [51] COMEAU A M,TÉTART F,TROJET S N,et al. Phage-antibiotic synergy(PAS):β-lactam and quinolone antibiotics stimulate virulent phage growth[J]. PLOS One,2007,2(8):799.
    [52] MODI S R,LEE H H,SPINA C S,et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome[J]. Nature,2013,499(7457):219-222.
    [53] JIANG S C,PAUL J H. Gene Transfer by Transduction in the marine environment[J]. Applied and Environmental Microbiology,1998,64(8):2780-2787.
    [54] VARGA M,PANTU ČEK R,RU ŽIČKOVÁ V,et al. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus[J]. The Journal of General Virology,2016,97(1):258-268.
    [55] GULINO K,RAHMAN J,BADRI M,et al. Initial mapping of the New York city wastewater virome[J]. mSystems,2020,5(3):1-18.
    [56] WU Q,LIU W T. Determination of virus abundance,diversity and distribution in a municipal wastewater treatment plant[J]. Water Research,2009,43(4):1101-1109.
    [57] RIZZO L,CELIA M,MERLIN C,et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment:A review[J]. Science of the Total Environment,2013,447:345-360.
    [58] CALERO-CÁCERES W,MUNIESA M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater[J]. Water Research,2016,95:11-18.
    [59] SUN R,YU P,ZUO P,et al. Bacterial concentrations and water turbulence influence the importance of conjugation versus phage-mediated antibiotic resistance gene transfer in suspended growth systems[J]. ACS Environmental Au,2022,2(2):156-165.
    [60] HUANG J,DAI X,WU Z,et al. Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes[J]. The ISME Journal,2023,17(9):1467-1481.
    [61] VARGA M,PANTUČEK R,RUŽIČKOVÁ V,et al. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus[J]. Journal of General Virology,2016,97(1):258-268.
    [62] DŽUNKOVÁ M,LOW S J,DALY J N,et al. Defining the human gut host–phage network through single-cell viral tagging[J]. Nature Microbiology,2019,4(12):2192-2203.
    [63] ENAULT F,BRIET A,BOUTEILLE L,et al. Phages rarely encode antibiotic resistance genes:a cautionary tale for virome analyses[J]. The ISME Journal,2017,11(1):237-247.
    [64] BILLAUD M,LAMY-BESNIER Q,LOSSOUARN J,et al. Analysis of viromes and microbiomes from pig fecal samples reveals that phages and prophages rarely carry antibiotic resistance genes[J]. ISME Communications,2021,1(1):1-10.
    [65] WANG Q,WANG M,YANG Q,et al. The role of bacteriophages in facilitating the horizontal transfer of antibiotic resistance genes in municipal wastewater treatment plants[J]. Water Research,2025,268:1-12.
    [66] LUO X Q,WANG P,LI J L,et al. Viral community-wide auxiliary metabolic genes differ by lifestyles,habitats,and hosts[J]. Microbiome,2022,10(1):1-18.
    [67] CHEN Y,WANG Y,PAEZ-ESPINO D,et al. Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants[J]. Nature Communications,2021,12(1):1-11.
    [68] REISOGLU Ş,AYDIN S. Bacteriophages as a promising approach for the biocontrol of antibiotic resistant pathogens and the reconstruction of microbial interaction networks in wastewater treatment systems:a review[J]. Science of the Total Environment,2023,890(164291):1-7.
    [69] JI M,LIU Z,SUN K,et al. Bacteriophages in water pollution control:advantages and limitations[J]. Frontiers of Environmental Science & Engineering,2021,15(5):1-15.
    [70] YU P,MATHIEU J,LU G W,et al. Control of antibiotic-resistant bacteria in activated sludge using polyvalent phages in conjunction with a production host[J]. Environmental Science & Technology Letters,2017,4(4):137-142.
    [71] GRAMI E,SALHI N,SEALEY K S,et al. Siphoviridae bacteriophage treatment to reduce abundance and antibiotic resistance of Pseudomonas aeruginosa in wastewater[J]. International Journal of Environmental Science and Technology,2022,19(4):3145-3154.
    [72] MELO L D R,OLIVEIRA H,PIRES D P,et al. Phage therapy efficacy:a review of the last 10 years of preclinical studies[J]. Critical Reviews in Microbiology,2020:78-99.
    [73] KEEN E C,BLISKOVSKY V V,MALAGON F,et al. Novel“superspreader” bacteriophages promote horizontal gene transfer by transformation[J]. mBio,2017,8(1):1-12.
    [74] ABE K,NOMURA N,SUZUKI S. Biofilms:hot spots of horizontal gene transfer(HGT)in aquatic environments,with a focus on a new HGT mechanism[J]. FEMS Microbiology Ecology,2020,96(5):1-12.
    [75] WANG Y Q,LI W,ZHUANG J long,et al. Bacteriophage-mediated extracellular DNA release is important for the structural stability of aerobic granular sludge[J]. Science of the Total Environment,2020,726:1-11.
    [76] SUTTLE C A. Marine viruses-major players in the global ecosystem[J]. Nature Reviews Microbiology,2007,5(10):801-812.
    [77] WINTER M,BUCKLING A,HARMS K,et al. Antimicrobial resistance acquisition via natural transformation:context is everything[J]. Current Opinion in Microbiology,2021,64:133-138.
    [78] BONIFÁCIO M,MATEUS C,ALVES A R,et al. Natural transformation as a mechanism of horizontal gene transfer in Aliarcobacter butzleri[J]. Pathogens,2021,10(7):1-15.
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  21
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-15
  • 网络出版日期:  2025-11-05
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回