中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋流器进料流速调控强化污泥致密效果研究

陈亚松 柳蒙蒙 孙宛 陶翔 邵彦鋆 王燕 王硕 李激

陈亚松, 柳蒙蒙, 孙宛, 陶翔, 邵彦鋆, 王燕, 王硕, 李激. 旋流器进料流速调控强化污泥致密效果研究[J]. 环境工程, 2025, 43(9): 119-126. doi: 10.13205/j.hjgc.202509013
引用本文: 陈亚松, 柳蒙蒙, 孙宛, 陶翔, 邵彦鋆, 王燕, 王硕, 李激. 旋流器进料流速调控强化污泥致密效果研究[J]. 环境工程, 2025, 43(9): 119-126. doi: 10.13205/j.hjgc.202509013
CHEN Yasong, LIU Mengmeng, SUN Wan, TAO Xiang, SHAO Yanjun, WANG Yan, WANG Shuo, LI Ji. Enhancement of sludge densification by regulating hydrocyclone inlet flow velocity[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 119-126. doi: 10.13205/j.hjgc.202509013
Citation: CHEN Yasong, LIU Mengmeng, SUN Wan, TAO Xiang, SHAO Yanjun, WANG Yan, WANG Shuo, LI Ji. Enhancement of sludge densification by regulating hydrocyclone inlet flow velocity[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 119-126. doi: 10.13205/j.hjgc.202509013

旋流器进料流速调控强化污泥致密效果研究

doi: 10.13205/j.hjgc.202509013
基金项目: 

中国长江三峡集团公司科研项目(NBWL202300013);中华人民共和国住房和城乡建设部科技项目(2024HJ01)

详细信息
    作者简介:

    陈亚松(1982—),男,博士,正高级工程师,主要研究方向为水环境系统治理。chen_yasong@ctg.com.cn

    通讯作者:

    李激(1970—),女,博士,教授,主要研究方向为污水处理工艺及技术研究和污泥处理处置与资源化研究。liji@jiangnan.edu.cn

Enhancement of sludge densification by regulating hydrocyclone inlet flow velocity

  • 摘要: 通过基于水力旋流器的污泥致密化技术,有望解决污水处理厂因处理负荷增加所面临的运行瓶颈。然而,目前仍缺乏水力旋流器的运行优化调控研究,以实现污泥沉降性能的精准提高。为进一步提升该技术的致密效率,系统比较了低(1 m/s)与高(3 m/s)进料流速下湿污泥尺寸分布和沉降性能差异。结果显示,相较于低流速,高流速增强了底流与溢流污泥的分离效率,使底流内中、大型生物聚集体(≥150 μm)的占比较溢流高出10.6%。经致密技术强化后,底流污泥的SVI30由101.3 mL/g降至89.1 mL/g,沉降性能显著改善(P- < 0.05),而被淘汰的溢流污泥SVI30高达124.9 mL/g。在功能菌群性能方面,致密污泥的硝化、反硝化与释磷速率分别提高3.3%、7.2%和12.2%。优势菌群分析进一步揭示,兼具高EPS分泌能力与同步硝化反硝化功能的Delftia在致密组中相对丰度增加3.02%,保证了污泥的聚集以及氮去除能力的提升。相反,具有反硝化除磷潜力的AcinetobacterDechloromonas丰度略有下降,但仍可能在脱氮除磷功能提升中发挥关键作用。该研究明确了旋流器流速调控对污泥致密化效果的显著影响,未来有必要结合分子生物学手段与动力学建模,推动旋流器参数优化与智能控制策略的发展。
  • [1] BAUHS K,ARMENTA M,MALTOS R,et al. Making waves:Riding the densification wave from current understanding to advancement[J]. Water Research,2024,257:121690.
    [2] GEMZA N,JANIAK K,ZIĘBA B,et al. Long-term effects of hydrocyclone operation on activated sludge morphology and full-scale secondary settling tank wet-weather operation in long sludge age WWTP[J]. Science of The Total Environment,2022,845:157224.
    [3] GEMZA N,KUŚNIERZ M. Gravimetric selection of activated sludge for settling properties improvement and granular sludge formation– full scale case study[J]. Water Practice and Technology,2022,17(5):1169-1176.
    [4] ROCHE C,DONNAZ S,MURTHY S,et al. Biological process architecture in continuous-flow activated sludge by gravimetry:Controlling densified biomass form and function in a hybrid granule–floc process at Dijon WRRF,France[J]. Water Environment Research,2022,94(1):e1664.
    [5] SHAO Y,CHEN S,TAO X,et al. Simultaneously enhance nutrient removal and sludge settleability through hydrocyclone-based technology in a full-scale high-inert containing activated sludge process[J]. Water Research,2025,280:123531.
    [6] ZHANG P,MA J,XUE X,et al. Hydrocyclones:beyond separation─redefining the complete wastewater treatment process[J]. ACS ES &T Water,2025,5(6):2721-2737.
    [7] PODMIRSEG S M,GóMEZ-BRANDóN M,MUIK M,et al. Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification[J]. Water Research,2022,218:118517.
    [8] REGMI P,STURM B,HIRIPITIYAGE D,et al. Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process[J]. Water Research,2022,210:117991.
    [9] SHAO Y J,WANG B,ZHOU Y,et al. Preliminary study on application of sludge densification system technology in an inverted AAO continuous flow wastewater treatment plant[J]. Environmental Engineering,2023,41(9):72-79. 邵彦鋆,王冰,周瑜,等. 污泥致密系统处理技术在污水处理厂的应用初探[J]. 环境工程,2023,41(9):72-79.
    [10] ZHANG S. Sequencing batch reactor coupled hydrocyclone for cultivation of aerobic granular sludge[J]. China Water & Wastewater,2023,39(9):72-77. 张帅. SBR耦合水力旋流器培养好氧颗粒污泥的研究[J]. 中国给水排水,2023,39(9):72-77.
    [11] NI L,JINYI T,TAO S,et al. Optimizing geometric parameters in hydrocyclones for enhanced separations:a review and perspective[J]. Separation & Purification Reviews,2019,48(1):30-51.
    [12] TIAN J,NI L,SONG T,et al. An overview of operating parameters and conditions in hydrocyclones for enhanced separations[J]. Separation and Purification Technology,2018,206:268-285.
    [13] YUAN H,FU S,TAN W,et al. Study on the hydrocyclonic separation of waste plastics with different density[J]. Waste Management,2015,45:108-111.
    [14] JIANG L Y,LIU P K,ZHANG Y K,et al. The effect of inlet velocity on the separation performance of a two-stage hydrocyclone[J]. Minerals,2019,9(4):209.
    [15] GUO D,JIANG X,GUO M,et al. Role of hydrocyclone separator on the formation and separation of aerobic granular sludge:Evaluating granulation efficiency and simulating hydrodynamic behavior[J]. Separation and Purification Technology,2022,283:120231.
    [16] ZHANG J,ZHANG Y,LV N,et al. Electrochemistry promotion of Fe(Ⅲ)/Fe(Ⅱ)cycle for continuous activation of PAA for sludge disintegration:Performance and mechanism[J]. Environmental Research,2024,256:119268.
    [17] HU X Y. Study on the improvement of activated sludge performance and its operational impact in wastewater treatment plants through cyclone separation of residual sludge[D]. Beijing:Beijing University of Chemical Technology,2024. 户祥芸. 剩余污泥旋流分离对污水处理厂活性污泥性能改善及其运行影响的研究[D]. 北京:北京化工大学,2024.
    [18] DAIGGER G T,KUO J,DERLON N,et al. Biological and physical selectors for mobile biofilms,aerobic granules,and densified-biological flocs in continuously flowing wastewater treatment processes:a state-of-the-art review[J]. Water Research,2023,242:120245.
    [19] ZHOU Z,LI H B,WANG Y,et al. Research on low-carbon operation mode in AAO-based wastewater treatment plants with low C/N influent[J]. China Environmental Science,2022,42(11):5088-5099. 周政,李怀波,王燕,等. 低碳氮比进水AAO污水处理厂低碳运行[J]. 中国环境科学,2022,42(11):5088-5099.
    [20] XU Y,FANG Y,WANG Z,et al. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research,2018,141:135-144.
    [21] LIU Y,WANG H,XU Y,et al. Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge[J]. Separation and Purification Technology,2017,177:192-199.
    [22] KRAIPECH W,NOWAKOWSKI A,DYAKOWSKI T,et al. An investigation of the effect of the particle-fluid and particle-particle interactions on the flow within a hydrocyclone[J]. Chemical Engineering Journal,2005,111(2):189-197.
    [23] XU J,SUN Y,LIU Y,et al. In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone[J]. Science of The Total Environment,2019,695:133825.
    [24] JI P Z,YUAN J,YANG Z H,et al. Whole process testing and application of pre-anoxic A2/O and AO process[J]. China Water & Wastewater,2023,39(18):112-119. 冀鹏宙,袁进,杨志宏,等. 前置预缺氧A2/O+AO工艺全流程测试与应用研究[J]. 中国给水排水,2023,39(18):112-119.
    [25] LI J,WANG Y,LUO G B,et al. Operation evaluation of urban sewage treatment plants implementing grade I-A standard and analysis on key and difficult in upgrading the standard[J]. Environmental Engineering,2020,38(7):1-12. 李激,王燕,罗国兵,等. 城镇污水处理厂一级A标准运行评估与再提标重难点分析[J]. 环境工程,2020,38(7):1-12.
    [26] LI L,PAGILLA K R. Biomass density-function relationships in suspended growth biological processes:a critical review[J]. Water Research,2017,111:274-287.
    [27] AFONSO A C,GOMES I B,SAAVEDRA M J,et al. Drinking-water isolated Delftia acidovorans selectively coaggregates with partner bacteria and facilitates multispecies biofilm development[J]. Science of the Total Environment,2023,875:162646.
    [28] YAN X J,TAO H B,LI X Y,et al. Nitrogen-removal ability of heterotrophic nitrification-aerobic denitrification bacterium Delftia sp. Y1 for micro-polluted water[J]. Guangzhou Chemical Industry,2019,47(12):98-100. 严新杰,陶海波,李新宇,等. 异养硝化-好氧反硝化菌Delftia sp.Y1对微污染水的脱氮性能[J]. 广州化工,2019,47(12):98-100.
    [29] CHEN H R,LIU X Y,XU F F,et al. Isolation and nitrogen-removal capability of Delftia sp. B07 derived from urban rivers sources[J]. Water & Wastewater Engineering,2020,56(1):593-601. 陈辉蓉,柳新月,徐芳芳,等. 城市河流来源脱氮菌Delftia sp.B07的分离及其脱氮活性研究[J]. 给水排水,2020,56(1):593-601.
    [30] WANG J,TIAN Y,WEI J,et al. Impacts of dibutyl phthalate on biological municipal wastewater treatment in a pilot-scale A2/O-MBR system[J]. Chemosphere,2022,308:136559.
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-14
  • 网络出版日期:  2025-11-05
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回