中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟气碳捕集耦合催化强化再生技术过程模拟与评价分析

张杰 蒋金生 詹国雄 赵杰 陈阵 李俊华

张杰, 蒋金生, 詹国雄, 赵杰, 陈阵, 李俊华. 烟气碳捕集耦合催化强化再生技术过程模拟与评价分析[J]. 环境工程, 2025, 43(9): 139-147. doi: 10.13205/j.hjgc.202509015
引用本文: 张杰, 蒋金生, 詹国雄, 赵杰, 陈阵, 李俊华. 烟气碳捕集耦合催化强化再生技术过程模拟与评价分析[J]. 环境工程, 2025, 43(9): 139-147. doi: 10.13205/j.hjgc.202509015
ZHANG Jie, JIANG Jinsheng, ZHAN Guoxiong, ZHAO Jie, CHEN Zhen, LI Junhua. Simulation and evaluation of a flue gas carbon capture process coupled with catalytically-enhanced regeneration technology[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 139-147. doi: 10.13205/j.hjgc.202509015
Citation: ZHANG Jie, JIANG Jinsheng, ZHAN Guoxiong, ZHAO Jie, CHEN Zhen, LI Junhua. Simulation and evaluation of a flue gas carbon capture process coupled with catalytically-enhanced regeneration technology[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 139-147. doi: 10.13205/j.hjgc.202509015

烟气碳捕集耦合催化强化再生技术过程模拟与评价分析

doi: 10.13205/j.hjgc.202509015
基金项目: 

国家重点研发计划(2023YFF0614304);天然气管道燃气轮机尾气低浓度二氧化碳捕集吸收剂性能测试评价项目(20242001290)

详细信息
    作者简介:

    张杰,博士研究生,高级工程师,开展油气管道低碳运行技术、环境风险规律及管控技术等研究。zhangjie01@pipechina.com.cn

    通讯作者:

    詹国雄(1990—),男,博士,助理研究员,主要从事工艺过程建模、评价及优化研究。t862646071@126.com

Simulation and evaluation of a flue gas carbon capture process coupled with catalytically-enhanced regeneration technology

  • 摘要: 在国家碳达峰、碳中和的背景下,如何实现低成本高效的烟气碳捕集具有重要意义。MEA吸收工艺作为当前最成熟的烟气捕集方案,被广泛应用于各行业的碳捕集过程中,催化强化再生手段在降低过程再生能耗方面有着重要作用。通过结合Aspen Plus工艺过程模拟手段,对常规和催化强化再生的MEA烟气脱碳过程进行模拟研究分析,以明晰催化强化再生手段的技术先进性。首先,采用Aspen Plus模拟烟气脱碳过程,探究常规MEA吸收过程的吸收温度、气液比、解吸温度等主要工艺操作参数对吸收效果的影响,获得MEA吸收解吸影响规律和工艺能耗低的操作方案。其次,基于催化假设,构建催化强化再生的MEA脱碳工艺过程,分析操作参数的影响变化趋势,获得能耗最低的操作方案。之后,对2种低能耗工艺的操作方案进行评价,以探究催化工艺技术优势。研究结果表明,催化强化再生手段可以有效提高解吸速率和CO2的循环吸收量。在工艺再生能耗方面,相比于常规吸收过程,催化强化再生工艺过程可降低再生能耗约24%,能耗成本减少约43元/t CO2。研究结果可以为开发低能耗碳捕集技术提供必要技术支持。
  • [1] CHEN Z,YUAN B,ZHAN G,et al. Energy-efficient biphasic solvents for industrial carbon capture:role of physical solvents on CO2 absorption and phase splitting[J]. Environmental Science & Technology,2022,56(18):13305-13313.
    [2] An S L,Wang L D,Yu S H. Research progresses in CO2 capture technology using phase change solvents[J]. Environmental Protection of Chemical Industry,2017,37(1):31-37. 安山龙,汪黎东,于松华,等. 相变溶剂捕集CO2技术的研究进展[J]. 化工环保,2017,37(1):31-37.
    [3] LI H Y,DENG J G,TAN Q. Research process of carbon capture,utilization and storage in China based on knowledge map[J]. Proceedings of the CSEE,2024,44(13):5219-5235 李华洋,邓金根,谭强,等. 基于知识图谱的中国碳捕集、利用与封存领域研究历程[J]. 中国电机工程学报,2024,44(13):5219-5235.
    [4] BAI Y F,WANG Z R,ZHAN G X,et al. Simulation and energy-saving optimization of carbon capture in coal-fired power plants[J]. Environmental Engineering,2023,41(9),1-14. 白永锋,王争荣,詹国雄,等. 燃煤电厂碳捕集模拟及节能优化[J]. 环境工程,2023,41(9):1-14.
    [5] YU W X,FENG H Y. The status,difficulty and improvement of ecological security in context of carbonpeak and carbon neutrality[J]. Journal of Xinjiang Normal University(Philosophy and Social Sciences),2024,45(4):70-79. 于文轩,冯瀚元. 碳达峰碳中和视域下我国生态安全的现状、难点及进路[J]. 新疆师范大学学报(哲学社会科学版),2024,45(4):70-79.
    [6] LIU F,GUO L F,ZHAO L Z. Safety interval of coal and green low-carbon technology path under the background of double carbon[J]. Journal of China Coal Society,2022,47(1),1-15. 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15.
    [7] KANG C Q,CHEN Q X,XIA Q. Innovation incurred by carbon capture technologies utilized in power systems[J]. Automation of Electric Power Systems,2010,34(1):1-7. 康重庆,陈启鑫,夏清. 应用于电力系统的碳捕集技术及其带来的变革[J]. 电力系统自动化,2010,34(1):1-7.
    [8] 科学技术部社会发展科技司,中国 21 世纪议程管理中心. 应对气候变化国家研究进展报告2019[M]. 北京:科学出版社,2019.

    Department of Science and Technology for Social Development,Ministry of Science and Technology,China Agenda 21 Management Center. National progress report on addressing climate change 2019[M]. Beijing:Science Press,2019.
    [9] LI K,COUSINS A,YU H,et al. Systematic study of aqueous monoethanolamine-based CO2 capture process:model development and process improvement[J]. Energy Science & Engineering,2016,4(1):23-39.
    [10] OH S Y,KIM J K. Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes[J]. Energy,2018,146:57-66.
    [11] JIANG G,HUANG Q,KENARSARI S D,et al. A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology[J]. Applied Energy,2015,147:214-223.
    [12] YORO K O,DARAMOLA M O,SEKOAI P T,et al. Advances and emerging techniques for energy recovery during absorptive CO2 capture:a review of process and non-process integration-based strategies[J]. Renewable and Sustainable Energy Reviews,2021,147:111241.
    [13] MAEDA K,OWADA M,KIMURA N,et al. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae[J]. Energy Conversion and Management,1995,36(6):717-720.
    [14] YUAN B,ZHAN G,CHEN Z,et al. Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent:effect of mass transfer and solvent regeneration[J]. International Journal of Greenhouse Gas Control,2022,118:103673.
    [15] ZHAO D Y,WANG J F,TIAN Q H. Energy consumption optimization of regeneration tower forMEA CO2 capture process[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(2):181-186. 赵东亚,王家凤,田群宏,等. MEA法碳捕集工艺再生塔能耗优化[J]. 中国石油大学学报(自然科学版),2021,45(2):181-186.
    [16] LI Y,CHEN Z,YUAN B,et al. Synergistic promotion for CO2 absorption and solvent regeneration by fine waste red mud particles on in amine-based carbon capture:performance and mechanism[J]. Separation and Purification Technology,2023,304:122380.
    [17] XING L,WEI K,LI Q,et al. One-step synthesized SO 4 2 - /ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture[J]. Environmental Science & Technology,2020,54(21):13944-13952.
    [18] XUE K,ZHAN G,WU X,et al. Integration of membrane contactors and catalytic solvent regeneration for efficient carbon dioxide capture[J]. Journal of Membrane Science,2023,684:121870.
    [19] ZHAN G,CAO F,BAI L,et al. Process simulation and optimization of ammonia-containing gas separation and ammonia recovery with ionic liquids[J]. ACS Sustainable Chemistry & Engineering,2021,9(1):312-325.
    [20] ZHAN G,CAO F,CHEN J,et al. Comprehensive evaluation of an ionic liquid based deep purification process for NH3-containing industrial gas[J]. Journal of Environmental Sciences,2024,136:698-708.
    [21] ZHAN G,BAI L,ZENG S,et al. Dynamic process simulation and assessment of CO2 removal from confined spaces using pressure swing adsorption[J]. Industrial & Engineering Chemistry Research,2020,59(37):16407-16419.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 网络出版日期:  2025-11-05
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回