中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据驱动的废锂离子电池再生利用过程评价方法研究进展

赵元昊 宗宇航 孙峙 曹宏斌 阎文艺 赵赫

赵元昊, 宗宇航, 孙峙, 曹宏斌, 阎文艺, 赵赫. 基于数据驱动的废锂离子电池再生利用过程评价方法研究进展[J]. 环境工程, 2025, 43(9): 183-197. doi: 10.13205/j.hjgc.202509019
引用本文: 赵元昊, 宗宇航, 孙峙, 曹宏斌, 阎文艺, 赵赫. 基于数据驱动的废锂离子电池再生利用过程评价方法研究进展[J]. 环境工程, 2025, 43(9): 183-197. doi: 10.13205/j.hjgc.202509019
ZHAO Yuanhao, ZONG Yuhang, SUN Zhi, CAO Hongbin, YAN Wenyi, ZHAO He. Research progress on data-driven evaluation methods for recycling processes of spent lithium-ion batteries[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 183-197. doi: 10.13205/j.hjgc.202509019
Citation: ZHAO Yuanhao, ZONG Yuhang, SUN Zhi, CAO Hongbin, YAN Wenyi, ZHAO He. Research progress on data-driven evaluation methods for recycling processes of spent lithium-ion batteries[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(9): 183-197. doi: 10.13205/j.hjgc.202509019

基于数据驱动的废锂离子电池再生利用过程评价方法研究进展

doi: 10.13205/j.hjgc.202509019
基金项目: 

典型锂电池材料绿色制造技术体系与示范(XDA0430105);国家自然科学基金青年基金项目“基于关键性分析的废锂电池再生利用过程多目标综合评价方法研究”(52300238);中国科学院化学化工科学数据中心项目“中国科学院化学化工科学数据中心能力建设”(WX145XQ07-12)

详细信息
    作者简介:

    赵元昊(1998—),男,硕士,主要研究方向为废锂离子电池再生利用过程多目标优化评价。zhaoyuanhao23@mails.ucas.ac.cn

    通讯作者:

    阎文艺(1989—),女,副研究员,主要研究方向为电子废弃物资源化过程多维综合评价。wyyan@ipe.ac.cn

Research progress on data-driven evaluation methods for recycling processes of spent lithium-ion batteries

  • 摘要: 随着电动汽车和储能设备的快速发展,废锂离子电池再生利用过程的研究逐渐成为学术界和工业界的焦点。系统综述了现有废锂离子电池再生利用过程的评价方法,包括生命周期评价、技术经济评价、关键性评价、物质流分析、投入产出分析、最佳可行技术评价及多方法耦合的应用,深入分析了各方法的适用性和局限性。综述表明,废锂离子电池再生利用过程评价是涉及多要素和多维度的复杂系统,不同评价方法在电池类型、指标选择和模型构建上差异显著,其中生命周期评价因其评价体系的成熟性与广泛应用成为最具代表性的方法。同时,现阶段依靠单一方法难以全面反映废锂电池再生利用的多重影响,多方法耦合已成为研究趋势,但尚需进一步完善以涵盖碳排放、环境影响、资源利用及经济效益等多维因素。数据驱动方法则为该领域提供了新的研究工具,通过结合机器学习和大数据技术优化数据处理,由数智驱动提升模型准确度。研究结果将为废锂离子电池再生利用技术的优化和政策制定提供科学依据,促进废锂离子电池再生利用行业的可持续发展。
  • [1] 中华人民共和国中央人民政府. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议.[EB/OL].[ 2020-11-03]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm

    People's Republic of China Central People's Government. Suggestions of the cpc central committee on formulating the 14th five-year plan for national economic and social development and the long-range objectives for 2035.[EB/OL].[ 2020-11-03]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm
    [2] BISWAL B K,ZHANG B,TRAN P T M,et al. Recycling of spent lithium-ion batteries for a sustainable future:recent advancements[J]. Chemical Society Reviews,2024,53:5552-5592.
    [3] SUN J,LI J G,ZHOU T,et al. Toxicity,a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy,2016,27:313-319.
    [4] NATARAJAN S,ARAVINDAN V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials,2018,8(33):1802303.
    [5] 中国工业节能与清洁生产协会. 中国新能源电池回收利用产业发展报告(2022)[M]. 北京:机械工业出版社,2022.

    China Industrial Energy Conservation and Clean Production Association. China new energy battery recycling industry development report 2022[M]. Beijing:Mechanical Industry Press,2022.
    [6] ZENG J,LIU S. Forecasting the sustainable classified recycling of used lithium batteries by gray graphical evaluation and review technique[J]. Renewable Energy,2023,202:602-612.
    [7] LEI S,SUN W,YANG Y. Comprehensive technology for recycling and regenerating materials from spent lithium iron phosphate battery[J]. Environmental Science & Technology,2024,58(8):3609-3628.
    [8] CHEN W S,HO H J. Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods[J]. Metals,2018,8(5):321.
    [9] WANG H,HUO J D,QU G R,et al. Research progress on the resource recovery technology of spent lithium-ion battery cathode materials[J]. Chemical Industry and Engineering Progress,2023,42(5):2702-2716. 王昊,霍进达,曲国瑞,等. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展,2023,42(5):2702-2716.
    [10] TANG D,WANG J X,CHEN W,et al. Current status and prospects of direct recycling of spent lithium-ion battery cathode materials[J]. Inorganic Salt Industry,2023,55(1):15-25. 唐迪,王俊雄,陈稳,等. 退役锂离子电池正极材料直接回收的研究现状和展望[J]. 无机盐工业,2023,55(1):15-25.
    [11] LV W,WANG Z,CAO H,et al. A critical review and analysis on the recycling of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):1504-1521.
    [12] LI P,LUO S,ZHANG L,et al. Progress,challenges,and prospects of spent lithium-ion batteries recycling:a review[J]. Journal of Energy Chemistry,2024,89:144-171.
    [13] FORTE F,PIETRANTONIO M,PUCCIARMATI S,et al. Lithium iron phosphate batteries recycling:An assessment of current status[J]. Critical Reviews in Environmental Science and Technology,2021,51(19):2232-2259.
    [14] YANG C,ZHANG J,LIANG G,et al. An advanced strategy of“metallurgy before sorting” for recycling spent entire ternary lithium-ion batteries[J]. Journal of Cleaner Production,2022,361:132268.
    [15] QIAO D,WANG G,GAO T,et al. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China:2010–2050[J]. Science of the Total Environment,2021,764:142835.
    [16] GAO W F,CUI T A,ZHAO X N,et al. Research progress on life cycle carbon footprint assessment of lithium-ion batteries[J]. Chemical Industry and Engineering Progress,2024,43(12):6983-6994. 高文芳,崔天傲,赵新宁,等. 锂离子电池全生命周期碳足迹评价研究进展[J]. 化工进展,2024,43(12):6983-6994.
    [17] LIU W,LIU H,LIU W,et al. Life cycle assessment of power batteries used in electric bicycles in China[J]. Renewable and Sustainable Energy Reviews,2021,139:110596.
    [18] BLÖMEKE S,SCHELLER C,CERDAS F,et al. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries[J]. Journal of Cleaner Production,2022,377:134344.
    [19] MESHALKIN V P,KULOV N N,GUSEVA T V,et al. Best available techniques and green chemical technology:possibilities for convergence of concepts[J]. Theoretical Foundations of Chemical Engineering,2022,56(6):964-970.
    [20] WANG P P,HUANG G H,LI Y P,et al. An ecological input-output CGE model for unveiling CO2 emission metabolism under China's dual carbon goals[J]. Applied Energy,2024,365:123277.
    [21] LI L,DABABNEH F,ZHAO J. Cost-effective supply chain for electric vehicle battery remanufacturing[J]. Applied energy,2018,226:277-286.
    [22] LIU J,SHI H,HU X,et al. Critical strategies for recycling process of graphite from spent lithium-ion batteries:a review[J]. Science of the Total Environment,2022,816:151621.
    [23] KALLITSIS E,KORRE A,KELSALL G H. Life cycle assessment of recycling options for automotive Li-ion battery packs[J]. Journal of cleaner production,2022,371:133636.
    [24] PRYSHLAKIVSKY J,SEARCY C. Fifteen years of ISO 14040:a review[J]. Journal of Cleaner Production,2013,57:115-123.
    [25] XUE M,XU Z. Application of life cycle assessment on electronic waste management:a review[J]. Environmental Management,2017,59:693-707.
    [26] ALIZADEH S,REZAZADEH A,AVAMI A. A cutting-edge tool for sustainable environmental management through life cycle assessment[J]. Renewable and Sustainable Energy Reviews,2024,192:114194.
    [27] YOO E,LEE U,KELLY J C,et al. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery[J]. Resources,Conservation and Recycling,2023,196:107040.
    [28] FAHIMI A,DUCOLI S,FEDERICI S,et al. Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries,based on embodied energy and carbon footprint[J]. Journal of Cleaner Production,2022,338:130493.
    [29] STEWARD D,MAYYAS A,MANN M. Economics and challenges of Li-ion battery recycling from end-of-life vehicles[J]. Procedia Manufacturing,2019,33:272-279.
    [30] SUN S,CHEN J,HE W,et al. Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process[J]. Science of The Total Environment,2021,776:145913.
    [31] SHAN W,ZI Y,CHEN H,et al. Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries[J]. Water Research,2024,252:121205.
    [32] YANG Y,OKONKWO E G,HUANG G,et al. On the sustainability of lithium ion battery industry–a review and perspective[J]. Energy Storage Materials,2021,36:186-212.
    [33] GRAEDEL T E,HARPER E M,NASSAR N T,et al. Criticality of metals and metalloids[J]. PNAS,2015,112:4257-4262.
    [34] SCHRIJVERS D,HOOL A,BLENGINI G A,et al. A review of methods and data to determine raw material criticality[J]. Resources,Conservation and Recycling,2020,155:104617-110634.
    [35] SONG J,YAN W,CAO H,et al. Material flow analysis on critical raw materials of lithium-ion batteries in China[J]. Journal of Cleaner Production,2019,215:570-581.
    [36] YAN W,CAO H,ZHANG Y,et al. Rethinking Chinese supply resilience of critical metals in lithium-ion batteries[J]. Journal of Cleaner Production,2020,256:120719.
    [37] LU B,LIU J,YANG J. Substance flow analysis of lithium for sustainable management in mainland China:2007—2014[J]. Resources,Conservation and Recycling,2017,119:109-116.
    [38] ERAKCA M,BAUMANN M,BAUER W,et al. Energy flow analysis of laboratory scale lithium-ion battery cell production[J]. IScience,2021,24(5):102437.
    [39] ZHANG H,LIU G,LI J,et al. Modeling the impact of nickel recycling from batteries on nickel demand during vehicle electrification in China from 2010 to 2050[J]. Science of the Total Environment,2023,859:159964.
    [40] ZONG Y,YAO P,ZHANG X,et al. Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China's recycling policies[J]. Waste Management,2023,171:463-472.
    [41] LV W,WANG Z,ZHENG X,et al. Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5165-5174.
    [42] VOJÁČEK O,BRABEC J,MACHÁČ J. Costs of achieving emission limits in coal-burning power plants under the recent best available techniques regulation amendment:evidence from national microeconomic data[J]. Journal of Cleaner Production,2022,352:131600.
    [43] DIRECTIVE C. Concerning integrated pollution prevention and control[M]. London:Official Journal of the European Communities,1996.
    [44] WEN Z,MENG F,DI J,et al. Technological approaches and policy analysis of integrated water pollution prevention and control for the coal-to-methanol industry based on best available technology[J]. Journal of Cleaner Production,2016,113:231-240.
    [45] COBAS-Flores E,HENDRICKSON C T,LAVE L B,et al. Life cycle analysis of batteries using economic input-output analysis[C]// Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment,IEEE,1996.
    [46] PAN X,KRAINES S. Environmental input-output models for life-cycle analysis[J]. Environmental and Resource Economics,2001,20:61-72.
    [47] SANFÉLIX J,De la RÚA C,SCHMIDT J H,et al. Environmental and economic performance of an li-ion battery pack:a multiregional input-output approach[J]. Energies,2016,9(8):584.
    [48] LENZEN M,MORAN D,KANEMOTO K,et al. Building Eora:a global multi-region input–output database at high country and sector resolution[J]. Economic Systems Research,2013,25(1):20-49.
    [49] WOOD R,STADLER K,BULAVSKAYA T,et al. Global sustainability accounting—developing EXIOBASE for multi-regional footprint analysis[J]. Sustainability,2014,7(1):138-163.
    [50] TIMMER M P,DIETZENBACHER E,LOS B,et al. An illustrated user guide to the world input–output database:the case of global automotive production[J]. Review of International Economics,2015,23(3):575-605.
    [51] Wilensky U. An introduction to agent-based modeling:modeling natural,social,and engineered complex systems with netlogo[M]. The MIT Press,2015.
    [52] NOVIZAYANTI D,PRASETIO E A,SIALLAGAN M,et al. Agent-based modeling framework for electric vehicle adoption transition in Indonesia[J]. World Electric Vehicle Journal,2021,12(2):73.
    [53] WASESA M,HIDAYAT T,ANDARIESTA D T,et al. Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain:A hybrid simulation approach[J]. Journal of Cleaner Production,2022,379:134625.
    [54] BOUTER A,GUICHET X. The greenhouse gas emissions of automotive lithium-ion batteries:a statistical review of life cycle assessment studies[J]. Journal of Cleaner Production,2022,344:130994.
    [55] TADAROS M,MIGDALAS A,SAMUELSSON B,et al. Location of facilities and network design for reverse logistics of lithium-ion batteries in Sweden[J]. Operational Research,2022:1-21.
    [56] CUI X K,WANG Q Z,LIU Q P. A data-driven model for prediction of lithium battery state of health[J]. Complex Systems and Complexity Science,2024,21(3):154-159. 崔孝凯,王庆芝,刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学,2024,21(3):154-159.
    [57] NIU B,WANG X,XU Z. Application of machine learning to guide efficient metal leaching from spent lithium-ion batteries and comprehensively reveal the process parameter influences[J]. Journal of Cleaner Production,2023,410:137188.
    [58] GARG A,YUN L,GAO L,et al. Development of recycling strategy for large stacked systems:experimental and machine learning approach to form reuse battery packs for secondary applications[J]. Journal of Cleaner Production,2020,275:124152.
    [59] GREENBANK S,HOWEY D. Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life[J]. IEEE Transactions on Industrial Informatics,2021,18(5):2965-2973.
    [60] WANG Y,YU Y,HUANG K,et al. From the perspective of battery production:energy–environment–economy(3E)analysis of lithium-ion batteries in China[J]. Sustainability,2019,11(24):6941.
    [61] YANG Jie,GU Fu,GUO Jianfeng. Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations[J]. Resources,Conservation and Recycling,2020,156:104713.
    [62] SCHENKER V,OBERSCHELP C,PFISTER S. Regionalized life cycle assessment of present and future lithium production for Li-ion batteries[J]. Resources,Conservation and Recycling,2022,187:106611.
    [63] TAO Y,WANG Z,WU B,et al. Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries[J]. Journal of cleaner production,2023,389:136008.
    [64] LIU K,WANG M,ZHANG Q,et al. A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments[J]. Journal of Hazardous Materials,2023,445:130502.
    [65] JIANG T T,WANG H F,JIN Q. Comparison of three typical lithium-ion batteries for pure electric vehicles from the perspective of life cycle assessment[J]. Clean Technologies and Environmental Policy,2024,26(2):331-350.
    [66] ANWANI S,METHEKAR R,RAMADESIGAN V. Life cycle assessment and economic analysis of acidic leaching and baking routes for the production of cobalt oxalate from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management,2020,22(6):2092-2106.
    [67] XIAO J,NIU B,LU J,et al. Perspective on recycling technologies for critical metals from spent lithium-ion batteries[J]. Chemical Engineering Journal,2024,496:154338.
    [68] Tao S,Liu H,Sun C,et al. Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning[J]. Nature Communications,2023,14(1):8032.
    [69] MENG K,XU G,PENG X,et al. Intelligent disassembly of electric-vehicle batteries:a forward-looking overview[J]. Resources,Conservation and Recycling,2022,182:106207.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-17
  • 网络出版日期:  2025-11-05
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回