中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某市废玻璃资源化潜力及其碳减排与经济效益评估

朱云 唐进峰 陈必鸣 廖本华 林嘉峻 李燕妮 吴海威 张鸿郭

朱云, 唐进峰, 陈必鸣, 廖本华, 林嘉峻, 李燕妮, 吴海威, 张鸿郭. 某市废玻璃资源化潜力及其碳减排与经济效益评估[J]. 环境工程, 2025, 43(10): 54-64. doi: 10.13205/j.hjgc.202510007
引用本文: 朱云, 唐进峰, 陈必鸣, 廖本华, 林嘉峻, 李燕妮, 吴海威, 张鸿郭. 某市废玻璃资源化潜力及其碳减排与经济效益评估[J]. 环境工程, 2025, 43(10): 54-64. doi: 10.13205/j.hjgc.202510007
ZHU Yun, TANG Jinfeng, CHEN Biming, LIAO Benhua, LIN Jiajun, LI Yanni, WU Haiwei, ZHANG Hongguo. Resource utilization potential of waste glass in a typical city of China and its carbon reduction and economic benefits evaluation[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 54-64. doi: 10.13205/j.hjgc.202510007
Citation: ZHU Yun, TANG Jinfeng, CHEN Biming, LIAO Benhua, LIN Jiajun, LI Yanni, WU Haiwei, ZHANG Hongguo. Resource utilization potential of waste glass in a typical city of China and its carbon reduction and economic benefits evaluation[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 54-64. doi: 10.13205/j.hjgc.202510007

某市废玻璃资源化潜力及其碳减排与经济效益评估

doi: 10.13205/j.hjgc.202510007
基金项目: 

广东省科技计划项目(2023A0505050143);广州市科技计划项目(202206010054)

详细信息
    作者简介:

    朱云(1978—),女,高级工程师,主要研究方向为城乡建设环境与资源保护。17826516@qq.com

    通讯作者:

    唐进峰(1984—),男,副教授,主要研究方向为固废资源化利用。jinfeng@gzhu.edu.cn

Resource utilization potential of waste glass in a typical city of China and its carbon reduction and economic benefits evaluation

  • 摘要: 生活垃圾中可回收物的资源化利用是推动城市绿色低碳转型的重要路径。在“双碳”目标背景下,提升可回收物的回收效率,对减轻城市废弃物处理压力,推动循环经济发展具有现实意义。然而目前多数城市在统计生活垃圾产出时仍以清运量为主要依据,但这一指标难以真实反映垃圾的实际产生水平。尤其是部分可回收物,往往在清运前便通过保洁人员、拾荒者或居民自主回收、丢弃等非正式渠道被分流,导致生活垃圾的实际产生量及其中可回收物的数量存在偏差。以我国某城市可回收物中废玻璃为研究对象,基于对其各行政区448户居民的入户追踪与问卷调查结果,采集生活垃圾前端数据,识别可回收物回收行为及资源化特征。在此基础上,采用蒙特卡罗模拟方法估算2023年该市家庭源废玻璃年产生量为25.10万t;结合XGBoost机器学习模型,预测该市全市废玻璃总产生量为61.83万t,其中,家庭源贡献量为24.72万t,模型结果与实测高度吻合。通过模型进一步计算,该年度碳减排潜力和经济效益潜力分别为4.47万~15.09万t和-460万~2,800万美元。研究表明,废玻璃的资源化回收在碳减排和经济收益方面均展现出显著潜力,所构建的模型具备良好的科学性与适用性,为其他可回收物提供评估路径的可复制范式,也为城市固废管理优化与“双碳”目标的实现提供了决策依据。
  • [1] Ministry of Industry and Information Technologyetal. Guiding opinions on accelerating the transformation and upgrading of traditional manufacturing industries[J]. Resource Recycling,2024(1):40-43. 工信部等八部门联合印发《关于加快传统制造业转型升级的指导意见》[J]. 资源再生,2024(1):40-3.
    [2] General Office of the State Council. Opinions on accelerating the establishment of a waste recycling system[J]. Renewable Resources and Circular Economy,2024,17(3):2-4. 国务院办公厅. 关于加快构建废弃物循环利用体系的意见[J]. 再生资源与循环经济,2024,17(3):2-4.
    [3] YANG B W. System thinking,economic logic and scientific path for achieving carbon peak and neutrality under Xi Jinping’s new development philosophy[J]. Economist,2021(9):5-12. 杨博文. 习近平新发展理念下碳达峰、碳中和目标战略实现的系统思维、经济理路与科学路径[J]. 经济学家,2021(9):5-12.
    [4] WANG Y M. Green and low-carbon transformation under China’s carbon peak and neutrality goals:strategies and pathways[J]. Globalization,2021(6):5-18. 王一鸣. 中国碳达峰碳中和目标下的绿色低碳转型:战略与路径[J]. 全球化,2021(6):5-18.
    [5] SU J,LIANG Y B,DING L,et al. Strategic discussion on China's energy development under the carbon neutrality target[J]. Bulletin of Chinese Academy of Sciences,2021,36(9):1001-1009. 苏健,梁英波,丁麟,等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊,2021,36(9):1001-1009.
    [6] VYAS S,PRAJAPATI P,SHAH A V,et al. Municipal solid waste management:Dynamics,risk assessment,ecological influence,advancements,constraints and perspectives[J]. Science of the Total Environment,2022,814:152802.
    [7] ZHANG X,LIU C,CHEN Y,et al. Source separation,transportation,pretreatment,and valorization of municipal solid waste:a critical review[J]. Environment Development and Sustainability,2022,24(10):11471-513.
    [8] ZENG Z Q. Simulation of residents’ classification behavior and resource-based carbon reduction scenarios for low-value recyclables[D]. Shanghai:East China Normal University,2024. 曾仔奇. 面向低价值可回收物的居民分类行为仿真及资源化碳减排情景模拟研究[D]. 上海:华东师范大学,2024.
    [9] LI Z H. Haizhu District Binjiang Subdistrict,Guangzhou:"Small fulcrum" leverages"great transformation," innovation in waste classification through the"Recyclable Materials+" model[J]. Urban and Rural Construction,2025(1):66-67. 李志红. 广州海珠区滨江街道:“小支点”撬动“大变革”,“可回收物+”创新垃圾分类新模式[J]. 城乡建设,2025(1):66-67.
    [10] Guangzhou Bureau of Statistics. Guangzhou statistical yearbook 2023[M]. Beijing:China Statistics Press,2024. 广州统计局. 广州统计年鉴2023[M]. 北京:中国统计出版社,2024.
    [11] WU T Y. Research on the influence path of environmental education on tourists' pro-environmental behavior in Wuyishan National Park[D]. Nanjing:Nanjing Forestry University,2023. 吴天雨. 武夷山国家公园环境教育对游客亲环境行为影响路径研究[D]. 南京:南京林业大学,2023.
    [12] YIN Z Q,GUAN J F,ZHANG X H,et al. Monte carlo methods and their applications[J]. Physics and Engineering,2002(3):45-49. 尹增谦,管景峰,张晓宏,等. 蒙特卡罗方法及应用[J]. 物理与工程,2002(3):45-9.
    [13] WANG W,XIANG H L,GONG W L,et al. Sample size requirements for the central limit theorem in common distributions[J]. Journal of Science for Higher Education Institutions,2021,41(7):20-25. 王维,向瀚淋,龚雯丽,等. 常见分布中心极限定理适用样本量研究[J]. 高师理科学刊,2021,41(7):20-5.
    [14] HEYDE C. Central limit theorem[M]. Wiley StatsRef:Statistics Reference Online,2014.
    [15] ARACHCHIGE C N,PRENDERGAST L A,STAUDTE R G. Robust analogs to the coefficient of variation[J]. Journal of Applied Statistics,2022,49(2):268-90.
    [16] LI Z S,LIU Z G. Feature selection algorithm based on XGBoost[J]. Journal of Communications,2019,40(10):101-108. 李占山,刘兆赓. 基于XGBoost的特征选择算法[J]. 通信学报,2019,40(10):101-108.
    [17] LI Z. Extracting spatial effects from machine learning model using local interpretation method:An example of SHAP and XGBoost[J]. Computers Environment and Urban Systems,2022,96:101845
    [18] ZHANG W,ASHRAF W M,SENADHEERA S S,et al. Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars[J]. Science of the Total Environment,2023,904:166678.
    [19] ISHFAQ K,SANA M,ASHRAF W M. Artificial intelligence–built analysis framework for the manufacturing sector:performance optimization of wire electric discharge machining system[J]. The International Journal of Advanced Manufacturing Technology,2023,128(11):5025-5039.
    [20] LU YC,LIN L. Design of a campus environmental monitoring system based on Android[J]. Information & Computer(Theoretical Edition),2023,35(23):19-22. 芦宇辰,林立. 基于Android的校园环境监测系统设计[J]. 信息与电脑(理论版),2023,35(23):19-22.
    [21] NIJMAN S W,LEEUWENBERG A,BEEKERS I,et al. Missing data is poorly handled and reported in prediction model studies using machine learning:a literature review[J]. Journal of Clinical Epidemiology,2022,142:218-29.
    [22] Mohammed S,BUDACH L,FEUERPFEIL M,et al. The effects of data quality on machine learning performanceon tabular data[J]. Information Systems,132:102549.
    [23] NIAZKAR M,MENAPACE A,BRENTAN B,et al. Applications of XGBoost in water resources engineering:A systematic literature review(Dec 2018-May 2023)[J]. Environmental Modelling & Software,2024,174:105971.
    [24] ZHANG Y M,CHEN H N,ZHANG Y. Haze prediction method based on XGBoost[J]. Computer Engineering and Design,2019,40(12):3631-3638. 张永梅,陈惠妮,张奕. 基于XGBoost的雾霾预测方法[J]. 计算机工程与设计,2019,40(12):3631-8.
    [25] OWSIANIAK M,BJøRN A,LAURENT A,et al. LCA applications[J]. Life cycle assessment:Theory and Practice,2018:31-41.
    [26] LIU Y,YE K,WU L,et al. Estimating quantity and equity of carbon emission from roads based on an improved LCA approach:The case of China[J]. The International Journal of Life Cycle Assessment,2022,27(6):759-79.
    [27] HETHERINGTON A C,BORRION A L,GRIFFITHS O G,et al. Use of LCA as a development tool within early research:challenges and issues across different sectors[J]. The International Journal of Life Cycle Assessment,2014,19:130-43.
    [28] HU P P,LI Y Z,ZHANG X Z,et al. CO2 emission from container glass in China,and emission reduction strategy analysis[J]. Carbon Management,2018,9(3):303-310.
    [29] SCHMITZ A,KAMIŃSKI J,MARIA S B,et al. Energy consumption and CO2 emissions of the European glass industry[J]. Energy Policy,2011,39(1):142-155.
    [30] NING K,SUN X F,WANG J G. Carbon emission characteristics and mitigation measures of China's daily-use glass industry[J]. Research of Environmental Sciences,2022,35(7):1752-1758. 宁可,孙晓峰,王均光. 我国日用玻璃行业碳排放特征及减排措施[J]. 环境科学研究,2022,35(7):1752-8.
    [31] WESTBROEK C D,BITTING J,CRAGLIA M,et al. Global material flow analysis of glass:From raw materials to end of life[J]. Journal of Industrial Ecology,2021,25(2):333-43.
    [32] CHUKWUDI B C,OGUNEDO M B. Glass recycling:achieving a compromise between economics of production and environmental benefit[J]. International Journal of Research and Review(IJRR),2019,6(6):391-6.
    [33] LESSARD J M,HABERT G,TAGNIT-HAMOU A,et al. Tracking the environmental consequences of circular economy over space and time:the case of close-and open-loop recovery of postconsumer glass[J]. Environmental Science & Technology,2021,55(17):11521-11532.
    [34] BRISTOGIANNI T,OIKONOMOPOULOU F. Glass up-casting:a review on the current challenges in glass recycling and a novel approach for recycling“as-is” glass waste into volumetric glass components[J]. Glass Structures & Engineering,2023,8(2):255-302.
    [35] SAHA B K,CHAKRABORTY B,DUTTA R. Estimation of waste heat and its recovery potential from energy-intensive industries[J]. Clean Technologies and Environmental Policy,2020,22:1795-814.
    [36] MüLLER A,FRIEDRICH L,REICHEL C,et al. A comparative life cycle assessment of silicon PV modules:Impact of module design,manufacturing location and inventory[J]. Solar Energy Materials and Solar Cells,2021,230:111277.
    [37] Guangzhou Nansha District People’s Government. Procurement Contract for the 2023 Urban and Rural Municipal Solid Waste Treatment Service Project in Nansha District[Z]. 2023. 广州市南沙区人民政府. 南沙区2023年城乡生活垃圾处理服务项目采购合同[Z]. 2023
    [38] LANDAU D,BINDER K. A guide to Monte Carlo simulations in statistical physics[M]. Cambridge:Cambridge University Press,2021.
    [39] ZHANG Q,WANG R,SHEN Y,et al. An ignored potential microplastic contamination of a typical waste glass recycling base[J]. Journal of Hazardous Materials,2022,422:126854.
    [40] Ning B K,Zhang J X,Meng J,et al. Experimental study on the strength of waste glass powder-tailings sand concrete[J]. Comprehensive Utilization of Mineral Resources,2015(3):69-72. 宁宝宽,张俊祥,孟晋,等. 废玻璃粉一尾矿砂混凝土的强度试验研究[J]. 矿产综合利用,2015(3):69-72.
    [41] ZIER M,STENZEL P,KOTZUR L,et al. A review of decarbonization options for the glass industry[J]. Energy Conversion and Management:X,2021,10:100083.
    [42] DEL RIO D D F,SOVACOOL B K,FOLEY A M,et al. Decarbonizing the glass industry:A critical and systematic review of developments,sociotechnical systems and policy options[J]. Renewable and Sustainable Energy Reviews,2022,155:111885.
    [43] ZHU Y. Reflections on waste glass recycling in guangzhou under the background of household waste classification[J]. Renewable Resources and Circular Economy,2021,14(1):16-20. 朱云. 生活垃圾分类背景下对广州废玻璃回收利用的思考[J]. 再生资源与循环经济,2021,14(1):16-20.
    [44] FRANçA W T,BARROS M V,SALVADOR R,et al. Integrating life cycle assessment and life cycle cost:A review of environmental-economic studies[J]. The International Journal of Life Cycle Assessment,2021,26:244-274.
    [45] TUA C,GROSSO M,RIGAMONTI L. Reusing glass bottles in Italy:a life cycle assessment evaluation[J]. Procedia CIRP,2020,90:192-197.
    [46] XIE Y L,CHEN Y B,ZHOU L Q. Research on population scale prediction in Guangzhou[J]. Shanxi Architecture,2016,42(26):5-7. 谢泳龙,陈颖彪,周柳青. 广州人口规模预测研究[J]. 山西建筑,2016,42(26):5-7.
    [47] JIE T,CHEN Q L,YOU L F,et al. The impact of changes in the working-age population on economic development:a case study of Guangzhou[J]. Urban Observation,2020(2):75-83. 解韬,陈巧丽,由丽芳,等. 劳动年龄人口变化对经济发展的影响:以广州为例[J]. 城市观察,2020(2):75-83.
    [48] HONG J Z,GUO B Y,FU Y C,et al. A method for analyzing the allometric growth of human-land coupling in new urbanization[J]. Journal of Geo-Information Science,2020,22(5):1049-62. 洪建智,郭碧云,付迎春,等. 新型城镇化的人地耦合异速增长分析方法[J]. 地球信息科学学报,2020,22(5):1049-62.
    [49] CHEN L,DONG G J,LIU Y Z,et al. The impact of high-quality development of high-tech enterprises on economic stability and growth:a case study of Guangzhou[J]. Guangdong Science and Technology,2023,32(1):68-73. 陈黎,董观就,刘永子,等. 高新技术企业高质量发展对经济稳增长的影响:以广州为例[J]. 广东科技,2023,32(1):68-73.
    [50] WANG J B,OU K Y,WANG X L,et al. A study on the relationship between socioeconomic development and environmental quality in Guangzhou over the past 15 years[J]. Environmental Protection and Circular Economy,2022,42(4):86-94. 王剑斌,欧可仪,王小琳,等. 近15年广州社会经济发展与环境质量关系研究[J]. 环境保护与循环经济,2022,42(4):86-94.
  • 加载中
计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 录用日期:  2025-09-01
  • 修回日期:  2025-08-10
  • 网络出版日期:  2025-12-03
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回