中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电敏感区法结合机器学习实现水处理中纯颗粒物种类识别

蒲艺涛 肖康 王晓东 杨茹月 王宇轩 柯水洲 高静思

蒲艺涛, 肖康, 王晓东, 杨茹月, 王宇轩, 柯水洲, 高静思. 电敏感区法结合机器学习实现水处理中纯颗粒物种类识别[J]. 环境工程, 2025, 43(11): 1-10. doi: 10.13205/j.hjgc.202511001
引用本文: 蒲艺涛, 肖康, 王晓东, 杨茹月, 王宇轩, 柯水洲, 高静思. 电敏感区法结合机器学习实现水处理中纯颗粒物种类识别[J]. 环境工程, 2025, 43(11): 1-10. doi: 10.13205/j.hjgc.202511001
PU Yitao, XIAO Kang, WANG Xiaodong, YANG Ruyue, WANG Yuxuan, KE Shuizhou, GAO Jingsi. Identification of pure particle types in water treatment by electrical sensing zone method combined with machine learning[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 1-10. doi: 10.13205/j.hjgc.202511001
Citation: PU Yitao, XIAO Kang, WANG Xiaodong, YANG Ruyue, WANG Yuxuan, KE Shuizhou, GAO Jingsi. Identification of pure particle types in water treatment by electrical sensing zone method combined with machine learning[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 1-10. doi: 10.13205/j.hjgc.202511001

电敏感区法结合机器学习实现水处理中纯颗粒物种类识别

doi: 10.13205/j.hjgc.202511001
基金项目: 

深圳职业技术学院重点研发项目(6022310008K);中央高校基本科研业务费专项资金资助(E2EG0502X2)

详细信息
    作者简介:

    蒲艺涛(1998—),男,硕士研究生,主要研究方向为粒径监测和机器学习。3492648685@qq.com

    通讯作者:

    柯水洲,ksz@hnu.edu.cn;高静思,gaojingsi@szpt.edu.cn

    柯水洲,ksz@hnu.edu.cn;高静思,gaojingsi@szpt.edu.cn

Identification of pure particle types in water treatment by electrical sensing zone method combined with machine learning

  • 摘要: 水处理过程中存在多类颗粒物,准确检测其浓度和粒径分布对保障水厂运行和环境监测至关重要。然而,实际环境中各类颗粒物常相互混杂,现有检测方法难以实现混合颗粒体系中的精准检测。为实现水厂智能化监测需求,研究提出一种结合电敏感区法(ESZ)与机器学习(ML)的方法,首次实现了水处理中典型纯物质颗粒物的高精度分类识别。通过优化ESZ采集条件,确定3 mL/min抽吸速度和300 r/min搅拌速度为最佳参数,并从理论上分析了ESZ信号的形成机制,发现其波形受流体速度、颗粒直径、密度及形状等多因素影响。基于ESZ构建了纯物质颗粒数据库,通过对比多种机器学习分类算法,最终采用支持向量机(SVM)模型。该模型对气泡、石英砂、聚对苯二甲酸乙二醇酯(PET)和草履虫4类纯物质颗粒的识别准确率达95.3%。其中,气泡与石英砂识别效果优异,但PET与草履虫存在一定混淆,需进一步优化算法。该研究为水处理工艺中颗粒物识别提供了新思路,未来可通过混合体系验证拓展应用,为水处理监测的精准化与智能化提供技术支持。
  • [1] KARR P R,KEINATH T M. Influence of particle size on sludge dewaterability[J]. Journal of Atmospheric and Oceanic Technology,1978,50(8):1911-1930.
    [2] DUAN N,DAI X,DONG B,et al. Anaerobic digestion of sludge differing in inorganic solids content:performance comparison and the effect of inorganic suspended solids content on degradation[J]. Water Science Technology,2016,74(9):2152-2161.
    [3] WEI W,HUANG Q S,SUN J,et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science and Technology,2019,53(16):9604-9613.
    [4] MCGINNIS D F,LITTLE J C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model[J]. Water Research,2002,36(18):4627-4635.
    [5] LI T W,PENG Y Z,ZHU X. Characteristics and roles of protozoa in activated sludge[J]. Water& Wastewater Engineering,2001(4):24-27. 李探微,彭永臻,朱晓. 活性污泥中原生动物的特征和作用[J]. 给水排水,2001(4):24-27.
    [6] BRAR S K,VERMA M. Measurement of nanoparticles by light-scattering techniques[J]. TrAC Trends in Analytical Chemistry,2011,30(1):4-17.
    [7] NOPENS I,BIGGS C A,DE Clercq B,et al. Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling(PBM)[J]. Water Science and Technology,2002,45(6):41-49.
    [8] MESQUITA D P,AMARAL A L,FERREIRA E C. Activated sludge characterization through microscopy:A review on quantitative image analysis and chemometric techniques[J]. Analytica Chimica Acta,2013,802:14-28.
    [9] MABROUKI J,FATTAH G,KHERRAF S,et al. Emerging Real-World Applications of Internet of Things[M]. Boca Raton:CRC Press,2022:69-87.
    [10] LOVELAND P J,WHALLEY W R. Soil and Environmental analysis[M]. Boca Raton:CRC Press,2000:293-326.
    [11] ZHANG Z,ZHE J,CHANDRA S,et al. An electronic pollen detection method using Coulter counting principle[J]. Atmospheric Environment,2005,39(30):5446-5453.
    [12] KOBAYASHI H,ARAO K,MURAYAMA T,et al. High-resolution measurement of size distributions of Asian dust using a Coulter multisizer[J]. Journal of Atmospheric Oceanic Technology,2007,24(2):194-205.
    [13] OLSON R J,ZETTLER E R,DURAND M D. Handbook of methods in aquatic microbial ecology[M]. Boca Raton:CRC Press,2018:175-186.
    [14] GNANN N,BASCHEK B,TERNES T A. Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence:a review[J]. Water Research,2022,222:118902.
    [15] LOWE M,QIN R,MAO X. A review on machine learning,artificial intelligence,and smart technology in water treatment and monitoring[J]. Water,2022,14(9):1384.
    [16] LI F,LIU D,GUO X,et al. Identification and visualization of environmental microplastics by Raman imaging based on hyperspectral unmixing coupled machine learning[J]. Journal of Hazardous Materials,2024,465:133336.
    [17] LI M,CAROZZA C,GUTHRIE R. I. Particle discrimination in water based LiMCA(liquid metal cleanliness analyzer)system[J]. Canadian metallurgical quarterly,2000,39(3):325-338.
    [18] WANG X,ISAC M,GUTHRIE R. I. Numerical studies on the in-situ measurement of inclusions in liquid steel using the ESZ or LiMCA technique[J]. ISIJ international,2009,49(7):975-984.
    [19] DEBLOIS R W,Bean C. Counting and sizing of submicron particles by the resistive pulse technique[J]. Review of Scientific Instruments,1970,41(7):909-916.
    [20] GARBOCZI E. The influence of particle shape on the results of the electrical sensing zone method as explained by the particle intrinsic conductivity[J]. Powder Technology,2017,322:32-40.
    [21] NOVOTNA K,CERMAKOVA L,PIVOKONSKA L,et al. Microplastics in drinking water treatment-current knowledge and research needs[J]. Science of The Total Environment,2019,667:730-740.
    [22] LEVINE A D,TCHOBANOGLOUS G,ASANO T. Characterization of the size distribution of contaminants in wastewater:treatment and reuse implications[J]. Journal of Water Pollution Control Federation,1985,57:805-816.
    [23] FOK A K,SISON J B C,UENO M S,et al. Phagosome formation in Paramecium:Effects of solid particles[J]. Journal of Cell Science,1988,90(3):517-524.
    [24] TEMESGEN T,BUI T T,HAN M,et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques:A review[J]. Advances in Colloid Interface Science,2017,246:40-51.
    [25] ZHANG M,LIAN Y. Numerical Investigation of the Coulter Principle in a Hydrodynamically Focused Microfluidics[J]. International Journal of Information Electronics Engineering,2014,4(6):462.
    [26] DAWSON C,WILBY R. Hydrological modelling using artificial neural networks[J]. Progress in Physical Geography,2001,25(1):80-108.
    [27] ZHANG P. Model selection via multifold cross validation[J]. The Annals of Statistics,1993,21:299-313.
    [28] SALIH A M,RAISI‐Estabragh Z,GALAZZO I. B,et al. A perspective on explainable artificial intelligence methods:SHAP and LIME[J]. Advanced Intelligent Systems,2025,7(1):2400304.
    [29] ARONOFF S. Classification accuracy:a user approach[J]. Photogrammetric Engineering Remote Sensing,1982,48(8):1299-1307.
    [30] KOIZUMI Y,MURATA S,HARADA N,et al. SNIPER:Few-shot learning for anomaly detection to minimize false-negative rate with ensured true-positive rate[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2019.
    [31] SOLIMAN N. A,TAGNIT-Hamou A. Using glass sand as an alternative for quartz sand in UHPC[J]. Construction Building Materials,2017,145:243-252.
    [32] ODAR F,HAMILTON W S. Forces on a sphere accelerating in a viscous fluid[J]. Journal of Fluid Mechanics,1964,18(2):302-314.
    [33] PAU P C F,BERG J,MCMILLAN W. Application of Stokes' law to ions in aqueous solution[J]. Journal of Physical Chemistry,1990,94(6):2671-2679.
    [34] GUO J,PUI T S,RAHMAN A R A,et al. 3 D numerical simulation of a Coulter counter array with analysis of electrokinetic forces[J]. Electrophoresis,2013,34(3):417-424.
    [35] DERAKHSHANI S M,SCHOTT D L,LODEWIJKS G. Micro-macro properties of quartz sand:Experimental investigation and DEM simulation[J]. Powder Technology,2015,269:127-138.
    [36] JONES F E. The air density equation and the transfer of the mass unit[J]. Journal of Research of the National Bureau of Standards,1978,83(5):419.
    [37] ISÈBE D,NÉRIN P. Numerical simulation of particle dynamics in an orifice-electrode system:Application to counting and sizing by impedance measurement[J]. International Journal for Numerical Methods in Biomedical Engineering,2013,29(4):462-475.
    [38] GUO X,LIU R,WANG X,et al. Two-phase flow simulation for distinguishing deformable particles with a LiMCA system[J]. Applied Mathematical Modelling,2020,88:106-121.
    [39] GERE D,CZIGANY T. Future trends of plastic bottle recycling:compatibilization of PET and PLA[J]. Polymer Testing,2020,81:106160.
    [40] Wichterman R. The biology of paramecium[M]. Boston,MA:Springer US,1986:143-180.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 录用日期:  2024-08-31
  • 修回日期:  2024-08-21
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回