Dynamic data analysis of groundwater level and temperature monitoring in five districts in Shenyang in 2023
-
摘要: 基于对城市地下水长期监测数据,通过整理和分析城市地下水水位与水温的监测资料,旨在探讨其动态变化特征和规律。了解这些变化对于保护城市地下水环境和确保城市供水安全至关重要。利用2022年11月至2023年10月1年期间沈阳市内五区的地下水监测数据,详细分析该年度地下水动态变化的特点,并从气象、水文以及人为活动等多角度综合评估地下水水位、地下水流场以及地下水温的变化特征,得出沈阳城区1年间地下水位与水温动态变化的基本规律。研究结果显示,沈阳市地下水动态受季节性降水、河流水位变化以及人类活动(如开采、热泵系统使用等)的影响明显。这些发现揭示了沈阳市1年间地下水动态变化规律,有助于为编制沈阳市水资源公报提供必要技术支持,还能为水行政管理部门未来科学管理和合理开发利用地下水资源提供技术支持。Abstract: The paper aims to explore the characteristics and patterns of dynamic changes in urban groundwater by organizing and analyzing the monitoring data on water level and water temperature in urban groundwater in Shenyang. Understanding these changes is crucial for protecting the urban groundwater environment and ensuring the safety of the urban water supply. The research methodology includes using groundwater monitoring data from five districts within Shenyang from Nov. 2022 to Oct. 2023, analyzing in detail the characteristics of the dynamic changes of groundwater, and comprehensively evaluating the changing characteristics in groundwater level, groundwater flow field, and groundwater temperature from multiple perspectives, including meteorology, hydrology, and anthropogenic activities. The basic law of the dynamic change of groundwater level and water temperature in Shenyang urban area in one year was obtained. The results showed that the groundwater dynamics in Shenyang were significantly influenced by seasonal precipitation, river level changes, and human activities (e.g., mining, heat pump system use, etc.). These findings not only reveal the dynamic change law of groundwater in Shenyang in the monitoring period, but also provide a valuable scientific basis for future water resources management.
-
Key words:
- Shenyang /
- groundwater /
- dynamics analysis /
- water level /
- water temperature
-
[1] ATTOUMANE A,JULIEN W,ROMAIN C,et al. Groundwater level monitoring using exploited domestic wells:outlier removal and imputation of missing values[J]. Hydrogeology Journal,2023,32(3):723-737. [2] TANG R,HUANG X,ZHOU D,et al. Global air quality change during the COVID-19 pandemic:Regionally different ozone pollution responses[J]. Atmospheric and Oceanic Science Letters,2020:100015. [3] SILVA M F,WEINTRAUB N M,WARD D N,et al. Short-term groundwater level fluctuations drive subsurface redox variability[J]. Environmental Science& Technology,2024,58(33):11. DOI:10.1021/acs.est.4c01115. [4] WANG Z Y,ZHAO L,WANG C. Study on the influence of water temperature change of Hunhe River on heat transfer mechanism of groundwater[J]. Architecture and Budget,2017(9):19-24. 王昭怡,赵磊,王闯. 浑河水温变化对地下水导热机理的影响研究[J]. 建筑与预算,2017(9):19-24. [5] ZHANG J,LU Z,LI C,et al. Estimation of groundwater-level changes based on GRACE satellite and GLDAS assimilation data in the Songnen Plain,China[J]. Hydrogeology Journal,2024,32(5):1495-1509. [6] MOHAMMED H S,FLORES G Y,MANMI A M A D,et al. Assessment of groundwater level fluctuation using integrated trend analysis approaches in the Kapran sub-basin,North East of Iraq[J]. Groundwater for Sustainable Development,2024,26:101292. [7] DU X Y. Optimization and regulation of water source heat pump project in Liaoning building under the influence of subway engineering[D]. Shenyang:Shenyang Jianzhu University,2019. 杜晓宇. 地铁工程影响下辽宁大厦水源热泵工程的优化调控[D]. 沈阳:沈阳建筑大学,2019. [8] WANG T H,PAN J. Dynamic change characteristics of groundwater temperature in Shenyang urban area and its influence on water source heat pumps[J]. Building Energy Efficiency,2017,45(4):38-40. 王天慧,潘俊. 沈阳城区地下水温度动态变化特征及对水源热泵的影响[J]. 建筑节能,2017,45(4):38-40. [9] GABRIELA M,VALERIE C,ERIC E,et al. Forecasting groundwater levels using machine learning methods:The case of California’s Central Valley[J]. Journal of Hydrology X,2023,21:100161. [10] LI C Y. Analysis of influencing factors of groundwater dynamics in Shenyang urban area[J]. Water Resources Planning and Design,2016(10):52-55. 李春雨. 沈阳市城区地下水动态影响因素分析[J]. 水利规划与设计,2016(10):52-55. [11] HUI X. Study on numerical simulation of land subsidence[D]. Hefei:Anhui University of Science and Technology,2022. 惠翔. 地面沉降数值模拟研究[D]. 合肥:安徽理工大学,2022. [12] WANG N,XU J,PEI C,et al. Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta:two different responsive mechanisms to emission reductions in China[J/OL]. Atmospheric Environment,2021,250:118100. https://doi.org/10.1016/j.atmosenv.2021.118100[ 2024-07-14]. [13] DUAN Y. Study on current situation and development strategy of water resources management in the Shenyang urban area[D]. Changchun:Jilin University,2010. 段勇. 沈阳市城区水资源管理现状及发展策略研究[D]. 长春:吉林大学,2010. [14] KONG L H. Causes and countermeasures of groundwater level decline in Shandan county[J]. Science& Technology Vision,2022,50(20):4-6. 孔丽华. 山丹县地下水位下降原因及对策[J]. 科技视界,2022(20):4-6. [15] JASECHKO S,PERRONE D. Global groundwater wells at risk of running dry[J]. Science,2021,372(6540):418-421. [16] XIAO Z Y,WANG S J,FANG Z W. Analysis of the impact of groundwater level decline on Wuhan urban geological environment[J]. Yunnan Water Power,2023,39(4):16-21. 肖志勇,王胜杰,方志文. 地下水位下降对武汉城市地质环境影响分析[J]. 云南水力发电,2023,39(4):16-21. -
点击查看大图
计量
- 文章访问数: 62
- HTML全文浏览量: 15
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: