中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退役风电叶片典型有机组分热解动力学特性和产物特性研究

张乾生 张宇彤 陈佩 张赵天一 周澳 陈永强 胡中发 邓双辉 王学斌

张乾生, 张宇彤, 陈佩, 张赵天一, 周澳, 陈永强, 胡中发, 邓双辉, 王学斌. 退役风电叶片典型有机组分热解动力学特性和产物特性研究[J]. 环境工程, 2025, 43(11): 133-141. doi: 10.13205/j.hjgc.202511015
引用本文: 张乾生, 张宇彤, 陈佩, 张赵天一, 周澳, 陈永强, 胡中发, 邓双辉, 王学斌. 退役风电叶片典型有机组分热解动力学特性和产物特性研究[J]. 环境工程, 2025, 43(11): 133-141. doi: 10.13205/j.hjgc.202511015
ZHANG Qiansheng, ZHANG Yutong, CHEN Pei, ZHANG Zhaotianyi, ZHOU Ao, CHEN Yongqiang, HU Zhongfa, DENG Shuanghui, WANG Xuebin. Pyrolysis kinetic and product characteristics of typical organic components of decommissioned wind turbine blades[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 133-141. doi: 10.13205/j.hjgc.202511015
Citation: ZHANG Qiansheng, ZHANG Yutong, CHEN Pei, ZHANG Zhaotianyi, ZHOU Ao, CHEN Yongqiang, HU Zhongfa, DENG Shuanghui, WANG Xuebin. Pyrolysis kinetic and product characteristics of typical organic components of decommissioned wind turbine blades[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 133-141. doi: 10.13205/j.hjgc.202511015

退役风电叶片典型有机组分热解动力学特性和产物特性研究

doi: 10.13205/j.hjgc.202511015
基金项目: 

国家重点研发计划资助项目(2022YFB4100500)

详细信息
    作者简介:

    张乾生(1993-),男,工程师,主要研究方向为退役新能源组件回收处置。deca01@163.com

    通讯作者:

    王学斌(1984-),男,教授,主要研究方向为煤燃烧及其污染物防治。wxb005@mail.xjtu.edu.cn

Pyrolysis kinetic and product characteristics of typical organic components of decommissioned wind turbine blades

  • 摘要: 深入探讨了退役风力涡轮机叶片中典型有机成分的热解动力学特性和产物特性。通过采用热重分析-傅里叶变换红外光谱-质谱联用技术(TG-FTIR-MS),对叶片中的3种主要有机成分:玻璃纤维增强树脂(GFRP)、泡沫材料(FM)和黏结材料(AM)进行了系统分析。研究发现:GFRP的热解过程主要表现为脱挥发分,其最大失重率约在350 ℃出现,且热解后残碳含量较低。AM的热解过程中,最大失重率分别在约375,350 ℃时出现。FM的热解失重则表现为2个阶段,分别在265,460 ℃时达到峰值。傅里叶变换红外光谱(FTIR)分析显示,热解过程中主要生成的产物包括二氧化碳(CO2)、水(H2O)和甲烷(CH4),且升温速率的增加有助于加速样品的分解。质谱(MS)分析进一步揭示了热解过程中释放的含氮、硫和氯的气态物质以及其他有机化合物。研究为风力涡轮机叶片的热化学特性提供了基础数据,并为其有效回收利用提供了理论依据。
  • [1] PSOMOPOULOS C S,KALKANIS K,KAMINARIS S,et al. A review of the potential for the recovery of wind turbine blade waste materials[J/OL]. Recycling,2019,4(1):7. https://doi.org/10.3390/recycling4010007.
    [2] XU Y,LIANG F A,LI D H,et al. A comprehensive review of waste wind turbine blades in China:current status and resource utilization[J]. Journal of Environmental Chemical Engineering,2024,12(5):113077.
    [3] HASHEMINEZHAD A,ZEYNAB A,BO A,et al. A comprehensive review of sustainable solutions for reusing wind turbine blade waste materials[J]. Journal of Environmental Management,2024,366:121735.
    [4] Global Wind Energy Council. Global wind report 2025[R]. Brussels:Global Wind Energy Council,2025.
    [5] LIU Y Y. Installed capacity of wind and solar power exceeds that of coal-fired power in China[N]. Science and Technology Daily,2024-08-02(01). 刘园园. 我国风电光伏发电装机规模超过煤电[N]. 科技日报,2024-08-02(01).
    [6] RANI M,CHOUDHARY P,KRISHNAN V,et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites Part B:Engineering,2021,215:108768.
    [7] XU M,JI H,WU Y,et al. Recovering glass fibers from waste wind turbine blades:recycling methods,fiber properties,and potential utilization[J]. Renewable and Sustainable Energy Reviews,2024,202:114690.
    [8] CHEN J,WANG J,NI A. Recycling and reuse of composite materials for wind turbine blades:an overview[J]. Journal of Reinforced Plastics and Composites,2019,38(12):567-577.
    [9] LIU P,BARLOW C Y. Wind turbine blade waste in 2050[J]. Waste Management,2017,62:229-240.
    [10] HU Y,ZHANG Y,LI Y,et al. Wind turbine blade recycling:a review of the recovery and high-value utilization of decommissioned wind turbine blades[J]. Resources,Conservation and Recycling,2024,210:107813.
    [11] JOUSTRA J,FLIPSEN B,BALKENENDE R. Structural reuse of wind turbine blades through segmentation[J]. Composites Part C:Open Access,2021,5:100137.
    [12] MA W J,ZHANG Y T,YANG C Z,et al. Research progress on resource recycling technology of retired wind turbine blades in bulk wind power plants[J]. Clean Coal Technology,2023,29(10):17-26. 马文静,张宇彤,杨春振,等. 大宗风电退役风机叶片资源化回收利用技术研究进展[J]. 洁净煤技术,2023,29(10):17-26.
    [13] NAHIL M A,WILLIAMS P T. Recycling of carbon fiber reinforced polymeric waste for the production of activated carbon fibers[J]. Journal of Analytical and Applied Pyrolysis,2011,91(1):67-75.
    [14] GEIGER R,HANNAN Y,TRAVIA W,et al. Composite wind turbine blade recycling-value creation through Industry 4.0 to enable circularity in repurposing of composites[J]. IOP Conference Series:Materials Science and Engineering,2020,942(1):012016.
    [15] JENSEN J P,SKELTON K. Wind turbine blade recycling:experiences,challenges and possibilities in a circular economy[J]. Renewable and Sustainable Energy Reviews,2018,97:165-176.
    [16] LIN Y,TU L,LIU H,et al. Fault analysis of wind turbines in China[J]. Renewable and Sustainable Energy Reviews,2016,55:482-490.
    [17] WANG J,BO D,MA X,et al. Adaptive back-stepping control for a permanent magnet synchronous generator wind energy conversion system[J]. International Journal of Hydrogen Energy,2019,44(5):3240-3249.
    [18] YUN Y,MYUNG W,HO W,et al. Pyrolysis characteristics of glass fiber-reinforced plastic(GFRP)under isothermal conditions[J]. Journal of Analytical and Applied Pyrolysis,2015,114:40-46.
    [19] XU M,WU H,CHEN Y,et al. The pyrolysis of end-of-life wind turbine blades under different atmospheres and their effects on the recovered glass fibers[J]. Composites Part B:Engineering,2023,251:110493.
    [20] CHEN W,MEI Y,XU M,et al. Characteristics,kinetics and product distribution on pyrolysis process for waste wind turbine blades[J]. Journal of Analytical and Applied Pyrolysis,2023,169:105859.
    [21] ROYUELA D,JUAN D,JOSÉ M,et al. Pursuing the circularity of wind turbine blades:thermochemical recycling by pyrolysis and recovery of valuable resources[J]. Journal of Analytical and Applied Pyrolysis,2024,181:106657.
    [22] XU M,WU H,XIANG X,et al. Effects of core materials on the evolution of products during the pyrolysis of end-of-life wind turbine blades[J]. Journal of Analytical and Applied Pyrolysis,2023,175:106222.
    [23] YIN Y,ZHANG Y,HUANG Z,et al. A kinetic research method for coal oxidation based on the Kubelka-Munk equation and the Starink method[J]. Combustion Science and Technology,2024,196(2):245-260.
    [24] YANG J L,ZHU W Q,HUHETAOLI,et al. Microwave pyrolysis of waste wind turbine blades to produce phenolic chemicals and recycled fibers[J]. Advances in New and Renewable Energy,2024,12(4):448-458. 杨佳亮,朱维强,呼和涛力,等. 废弃风机叶片微波热解制取酚类化学品及再生纤维[J]. 新能源进展,2024,12(4):448-458.
    [25] YOUSEF S,JUSTAS A,NERIJUS A,et al. Influence of carbon black filler on pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of glass fiber reinforced polymer composites[J]. Energy,2021,233:121167.
    [26] YOUSEF S,JUSTAS A,NERIJUS A,et al. Thermal degradation and pyrolysis kinetic behavior of glass fiber-reinforced thermoplastic resin by TG-FTIR,Py-GC/MS,linear and nonlinear isoconversional models[J]. Journal of Materials Research and Technology,2021,15:5360-5374.
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 录用日期:  2025-02-01
  • 修回日期:  2025-01-21
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回