中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械活化钢渣负载氧化镁复合材料对废水氮、磷同步吸附性能研究

洪英傑 赵聪 彭道平

洪英傑, 赵聪, 彭道平. 机械活化钢渣负载氧化镁复合材料对废水氮、磷同步吸附性能研究[J]. 环境工程, 2025, 43(11): 196-204. doi: 10.13205/j.hjgc.202511022
引用本文: 洪英傑, 赵聪, 彭道平. 机械活化钢渣负载氧化镁复合材料对废水氮、磷同步吸附性能研究[J]. 环境工程, 2025, 43(11): 196-204. doi: 10.13205/j.hjgc.202511022
HONG Yingjie, ZHAO Cong, PENG Daoping. Simultaneous adsorption performance of nitrogen and phosphorus from water by mechano-activated steel slag loaded with MgO[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 196-204. doi: 10.13205/j.hjgc.202511022
Citation: HONG Yingjie, ZHAO Cong, PENG Daoping. Simultaneous adsorption performance of nitrogen and phosphorus from water by mechano-activated steel slag loaded with MgO[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(11): 196-204. doi: 10.13205/j.hjgc.202511022

机械活化钢渣负载氧化镁复合材料对废水氮、磷同步吸附性能研究

doi: 10.13205/j.hjgc.202511022
基金项目: 

四川省自然科学基金项目(2025ZNSFSC0440)

详细信息
    作者简介:

    洪英傑(2000—),男,主要研究方向为固体废物处置与资源化。hyj_chengdu@163.com

    通讯作者:

    彭道平(1984—),男,副教授,主要研究方向为固体废物资源化、工程水环境效应及其控制。pdp0330@swjtu.edu.cn

Simultaneous adsorption performance of nitrogen and phosphorus from water by mechano-activated steel slag loaded with MgO

  • 摘要: 为从废水中回收营养物质、有效利用钢渣材料,制备了一种负载氧化镁的改性钢渣材料,研究了该材料吸附水中氨氮、磷酸盐的影响因素,对吸附前后的材料进行表征,并结合动力学模型和等温吸附曲线模型探究镁改性钢渣回收氮、磷营养物质的吸附机理。结果表明:当镁改性钢渣投加量为0.1 g/L、初始溶液pH为3.0、吸附时间为360 min、磷酸盐初始浓度为220 mg/L、氨氮初始浓度为100 mg/L时,磷酸盐和氨氮回收率分别为97.39%、79.60%;镁改性钢渣最大吸附容量达到氨氮74.973 mg/g,磷酸盐216.362 mg/g。此外,镁改性钢渣材料对氮、磷的吸附过程能被准二级动力学模型和Langmuir吸附等温线模型较好地描述,表明吸附过程为化学吸附和单分子层吸附,主要产物为鸟粪石沉淀。镁改性钢渣有望成一种具有应用前景的氮、磷回收材料。
  • [1] SOLOMON O A. Eutrophication:causes,consequences,physical,chemical and biological techniques for mitigation strategies[J]. Environmental Challenges,2023(12):100733.
    [2] SONARGHARE P C,MASRAM S C,SONPAROTE U R,et al. Causes and effects of eutrophication on aquatic life(a review)[J]. International Journal for Environmental Rehabilitation and Conservation,XI,2020:213-218.
    [3] GUAN Q,ZENG G,SONG J,et al. Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process[J]. Journal of Environmental Management,2021,293:112961.
    [4] CARRILLO V,FUENTES B,GÓMEZ G,et al. Characterization and recovery of phosphorus from wastewater by combined technologies[J]. Reviews in Environmental Science and Bio/Technology,2020,19:389-418.
    [5] GUAN Q,LI Y,ZHONG Y,et al. A review of struvite crystallization for nutrient source recovery from wastewater[J]. Journal of Environmental Management,2023,344:118383.
    [6] AGUADO D,BARAT R,BOUZAS A,et al. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources[J]. Science of the Total Environment,2019,672:88-96.
    [7] DAVIS R W,SICCARDI III A J,HUYSMAN N D,et al. Growth of mono-and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source[J]. Bioresource Technology,2015,198:577-585.
    [8] ZHANG T,HE X,DENG Y,et al. Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer[J]. Science of the Total Environment,2020,698:134240.
    [9] WANG J,YE X,ZHANG Z,et al. Selection of cost-effective magnesium sources for fluidized struvite crystallization[J]. Journal of Environmental Sciences,2018,70:144-153.
    [10] RABINOVICH A,HECKMAN J R,LEW B,et al. Magnesium supplementation for improved struvite recovery from dairy lagoon wastewater[J]. Journal of Environmental Chemical Engineering,2021,9(4):105628.
    [11] LEE S H,YOO B H,LIM S J,et al. Development and validation of an equilibrium model for struvite formation with calcium co-precipitation[J]. Journal of Crystal Growth,2013,372:129-137.
    [12] SHADDEL S,GRINI T,UCAR S,et al. Struvite crystallization by using raw seawater:Improving economics and environmental footprint while maintaining phosphorus recovery and product quality[J]. Water Research,2020,173:115572.
    [13] ZANGARINI S,PEPÈ Sciarria T,TAMBONE F,et al. Phosphorus removal from livestock effluents:recent technologies and new perspectives on low-cost strategies[J]. Environmental Science and Pollution Research,2020,27(6):5730-5743.
    [14] ASGARI G,SALARI M. Optimized synthesis of carbon-doped nano-MgO and its performance study in catalyzed ozonation of humic acid in aqueous solutions:Modeling based on response surface methodology[J]. Journal of Environmental Management,2019,239:198-210.
    [15] PARK N,CHANG H,JANG Y,et al. Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization[J]. Environmental Technology& Innovation,2021,21:101347.
    [16] XIA Y,DONG K,XIANG X,et al. Phosphorus hyperaccumulation in nano-MgO using a circular recovery process based on multiple phase transitions from periclase to brucite[J]. Science of The Total Environment,2020,727:138510.
    [17] LI S,ZENG W,XU H,et al. Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide[J]. Environmental Science and Pollution Research,2020,27:15463-15474.
    [18] FANG H,ZHOU T,CHEN X,et al. Controlled preparation and characterization of nano-sized hexagonal Mg(OH)2 flame retardant[J]. Particuology,2014,14:51-56.
    [19] PEI Y,WANG M,TIAN D,et al. Synthesis of core-shell SiO2@ MgO with flower like morphology for removal of crystal violet in water[J]. Journal of Colloid and Interface Science,2015,453:194-201.
    [20] HÖVELMANN J,PUTNIS C V. In situ nanoscale imaging of struvite formation during the dissolution of natural brucite:Implications for phosphorus recovery from wastewaters[J]. Environmental Science& Technology,2016,50:13032-13041.
    [21] SHI C,WANG X,ZHOU S,et al. Mechanism,application,influencing factors and environmental benefit assessment of steel slag in removing pollutants from water:a review[J]. Journal of Water Process Engineering,2022,47:102666.
    [22] GUO J,BAO Y,WANG M. Steel slag in China:treatment,recycling,and management[J]. Waste Management,2018,78:318-330.
    [23] YU C,ZHANG W,GAO F,et al. An overview of resource utilization of steel slag as absorbent material for waste water treatment[C]// E3S web of conferences. EDP Sciences,2020,199:00017.
    [24] BING L,BIAO T,ZHEN M,et al. Physical and chemical properties of steel slag and utilization technology of steel slag at home and abroad[C]// IOP Conference Series:Earth and Environmental Science,IOP Publishing,2019,242(3):032012.
    [25] YANG M,LU C,QUAN X,et al. Mechanism of acid mine drainage remediation with steel slag:a review[J]. ACS omega,2021,6(45):30205-30213.
    [26] CHANDRU P,KARTHIKEYAN J,SAHU A K,et al. Some durability characteristics of ternary blended SCC containing crushed stone and induction furnace slag as coarse aggregate[J]. Construction and Building Materials,2021,270:121483.
    [27] BARCA C,GÉRENTE C,MEYER D,et al. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe[J]. Water research,2012,46(7):2376-2384.
    [28] WU F,YU Q,GAUVIN F,et al. A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal[J]. Resources,Conservation and Recycling,2021,166:105238.
    [29] WANG W,SARDANS J,WANG C,et al. Steel slag amendment increases nutrient availability and rice yield in a subtropical paddy field in China[J]. Experimental agriculture,2018,54(6):842-856.
    [30] DAS S,GWON H S,KHAN M I,et al. Steel slag amendment impacts on soil microbial communities and activities of rice(Oryza sativa L.)[J]. Scientific Reports,2020,10(1):6746.
    [31] LEE S,WEON S,LEE C,et al. Removal of nitrogen and phosphate from wastewater by addition of bittern[J]. Chemosphere,2003,51(4):265-271.
    [32] HUANG H,XIAO D,LIU J,et al. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling[J]. Scientific Reports,2015,5(1):10183.
    [33] LI B,HUANG H,BOIARKINA I,et al. Phosphorus recovery through struvite crystallisation:recent developments in the understanding of operational factors[J]. Journal of Environmental Management,2019,248:109254.
    [34] PARK N,CHANG H,JANG Y,et al. Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization[J]. Environmental Technology& Innovation,2021,21:101347.
    [35] LIANG J,LV Y,LU Y,et al. Recovery of ammonium and phosphate from corn processing wastewater using magnetic MgO-Biochar[J]. Environmental Engineering,2020,38(9):89-94. 梁嘉琪,吕媛,陆茵,等. 铁磁性氧化镁生物炭对玉米加工废水中氮磷的回收效果[J]. 环境工程,2020,38(9):89-94.
    [36] ZHU T,LU Z,LIU Y,et al. Effects of preparation conditions of Mg-modified biochar on the removal of ammonium and phosphate in wastewater[J]. Environmental Engineering,2018,36(1):37-41. 祝天宇,卢泽玲,刘月娥,等. 镁改性生物炭制备条件对其氮、磷去除性能的影响[J]. 环境工程,2018,36(1):37-41.
    [37] ZHAO C,LI Y,PANG Y,et al. Red mud as a magnesium carrier for enhanced N and P recovery from wastewater by the struvite method[J]. Environmental Technology& Innovation,2023,30:103030.
    [38] XIA P,WANG X,WANG X,et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,506:220-227.
    [39] ZHU Y,SHAN S,HU T,et al. Hierarchical pore carbon-calcium nanocages for highly effective removal of ammonium-nitrogen and phosphorus[J]. Fuel Processing Technology,2023,247:107804.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 录用日期:  2025-04-23
  • 修回日期:  2025-03-29
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回