中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元素平衡视角下我国河流富营养化驱动及生态响应机制分析

田雨馨 关翔鸿 郑芷延 宋朝晖 邱光磊 韦朝海

田雨馨, 关翔鸿, 郑芷延, 宋朝晖, 邱光磊, 韦朝海. 元素平衡视角下我国河流富营养化驱动及生态响应机制分析[J]. 环境工程, 2025, 43(12): 1-12. doi: 10.13205/j.hjgc.202512001
引用本文: 田雨馨, 关翔鸿, 郑芷延, 宋朝晖, 邱光磊, 韦朝海. 元素平衡视角下我国河流富营养化驱动及生态响应机制分析[J]. 环境工程, 2025, 43(12): 1-12. doi: 10.13205/j.hjgc.202512001
TIAN Yuxin, GUAN Xianghong, ZHENG Zhiyan, SONG Zhaohui, QIU Guanglei, WEI Chaohai. Analysis of drivers and ecological response mechanisms of river eutrophication in China from an elemental balancing perspective[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 1-12. doi: 10.13205/j.hjgc.202512001
Citation: TIAN Yuxin, GUAN Xianghong, ZHENG Zhiyan, SONG Zhaohui, QIU Guanglei, WEI Chaohai. Analysis of drivers and ecological response mechanisms of river eutrophication in China from an elemental balancing perspective[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 1-12. doi: 10.13205/j.hjgc.202512001

元素平衡视角下我国河流富营养化驱动及生态响应机制分析

doi: 10.13205/j.hjgc.202512001
基金项目: 

国家自然科学基金资助项目(U1901218)

详细信息
    作者简介:

    田雨馨(2000—),女,硕士研究生,主要研究方向为水污染控制理论与技术。ty1025_x@163.com

    通讯作者:

    韦朝海(1962—),男,博士,教授,主要研究方向为水污染控制理论与技术。cechwei@scut.edu.cn

Analysis of drivers and ecological response mechanisms of river eutrophication in China from an elemental balancing perspective

  • 摘要: 在人类世进程中,流域水循环系统内元素化学计量的失衡可能成为制约河流生态可持续发展的突出问题。区域发展差异导致水体中碳、氮、磷的跨境循环复杂性提高,使污染治理面临着空间异质性的难题。当前排放标准的制定过程忽视了水生态系统代谢平衡阈值,污染减排效果与环境风险反馈未能实现一致性,末端减排后尾水的水质不利于生态代谢系统的功能协调性。对此,通过多源数据分析了我国流域C、N、P元素比例的时空分异特征,污废水处理厂进水C、N、P比值[ρ(C)∶ρ(N)∶ρ(P)=(354.07±121.33)∶(10.84±1.85)∶1]至出水[ρ(C)∶ρ(N)∶ρ(P)=(73.44±26.52)∶(10.10±2.53)∶1]的过程中,营养物比例持续扩大,污染治理策略与区域自然水体的生态功能间匹配失衡;流域元素比例呈现显著的纬度梯度,部分河流因人类活动而偏离自然本底值[ρ(C)∶ρ(N)∶ρ(P)=(136.30±51.24)∶(75.15±48.15)∶1];外流区普遍存在磷限制,水质结构以碳限制和营养物质过剩为特征,不利于植物利用与生物矿化。因此,流域水质管理存在总量减排、元素比例减排与径流混合减排的共同约束,有必要从化学计量比的角度出发,突破传统水质评价中绝对浓度指标的尺度局限,重点阐明处理技术优化与产业升级对元素流动的作用机制,为构建代谢平衡导向的流域治理体系提供科学依据。未来研究需要进一步耦合水文动力过程与生态代谢阈值,划定富营养化敏感区的空间边界及其气候、人类活动变化驱动下的演变趋势,通过模型实现技术减排、残余污染物与生态反馈的时空协调性。
  • [1] SONG C H,GUAN X H,TIAN Y X,et al. The compound pollution of watershed water environment in the process of Anthropocene-Ecocene[J]. China Environmental Science,2025,45(3):1529-1545. 宋朝晖,关翔鸿,田雨馨,等. 人类-生态世进程中流域水环境的复合污染[J]. 中国环境科学,2025,45(3):1529-1545.
    [2] MALHI Y. The concept of the anthropocene[J]. Annual Review of Environment and Resources,2017,42:77-104.
    [3] WEI C H,GUAN X H,WEI G R,et al. The importance of the interaction between aqueous solution properties and water pollution control processes[J]. Environmental Engineering,2021,39(11):28-40. 韦朝海,关翔鸿,韦庚锐,等. 水溶液性质与水污染控制工艺相互作用的重要性[J]. 环境工程,2021,39(11):28-40.
    [4] SAUTEREY B,WARD B A. Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean[J]. Proceedings of the National Academy of Sciences of the United States of America. 2022,119(1):e2114602118.
    [5] CHENG R M,XIAO W F,SHEN Y F,et al. Research progress of ecological stoichiometry in terrestrial ecosystems[J]. Scientia Silvae Sinicae,2018,54(7):130-136. 程瑞梅,肖文发,沈雅飞,等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学,2018,54(7):130-136.
    [6] DU Z,ZHENG H,PENUELAS J,et al. Shrub encroachment leads to accumulation of C,N,and P in grassland soils and alters C∶N∶P stoichiometry:A meta-analysis[J]. Science of the Total Environment,2024,951:175534.
    [7] DEUTSCH C,SARMIENTO J L,SIGMAN D M,et al. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature,2007,445(7124):163-167.
    [8] CRIDDLE C S,LUTHY R G,RITTMANN B E,et al. McCarty 1931-2023[J]. Nature Sustainability,2023,6(9):1033-1034.
    [9] CAI W J,HUANG W J,LUTHER G W,et al. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay[J]. Nature Communications,2017,8(1):369.
    [10] ZHANG X,DAVIDSON E A,MAUZERALL D L,et al. Managing nitrogen for sustainable development[J]. Nature,2015,528(7580):51-59.
    [11] Ministry of Ecology and Environment of the People's Republic of China. 2022 China Ecological Environment Status Bulletin[R]. 2023. 中国生态环境部. 2022年中国生态环境状况公报[R]. 2023.
    [12] DATRY T,FOULQUIER A,CORTI R,et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways[J]. Nature Geoscience,2018,11(7):497-503.
    [13] PETERSON B J,WOLLHEIM W M,MULHOLLAND P J,et al. Control of nitrogen export from watersheds by headwater streams[J]. Science,2001,292(5514):86-90.
    [14] CHEN L,LIU M,HUANG J. Interpretation of the National Standard GB/T 24040—2008 Environmental Management—Life Cycle Assessment—Principles and Framework[J]. Standards Science,2009(2):76-80. 陈亮,刘玫,黄进. GB/T 24040—2008《环境管理生命周期评价原则与框架》国家标准解读[J]. 标准科学,2009(2):76-80.
    [15] Ministry of Ecology and Environment of the People's Republic of China. Measures for the Supervision and Administration of Sewage Outlets into Rivers[Z]. 2024. 中国生态环境部. 入河排污口监督管理办法[Z]. 2024.
    [16] ZHANG J,KUANG L,MOU Z,et al. Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest[J]. Plant and Soil,2022,481(1):349-65.
    [17] HOU C,YANG Z,OUYANG W. Surface runoff and diffuse nitrogen loss dynamics in a mixed land use watershed with a subtropical monsoon climate[J] Processes,2023,11(7):10.3390/pr11071910
    [18] WALKER T W,SYERS J K. The fate of phosphorus during pedogenesis[J]. Geoderma,1976,15(1):1-19.
    [19] QUESADA C A,LLOYD J,SCHWARZ M,et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis[J]. Biogeosciences,2010,7(5):1515-1541.
    [20] HOULTON B Z,WANG Y P,VITOUSEK P M,et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature,2008,454(7202):327-330.
    [21] HU M,LIU Y,ZHANG Y,et al. Long-term(1980—2015)changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River basin[J]. Water Research,2020,177:115779.
    [22] KOERSELMAN W,ARTHUR F M M. The vegetation n:p ratio:a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology,1996,33(6):1441-50.
    [23] CHEN X,WANG M,LI M,et al. Convergent nitrogen–phosphorus scaling relationships in different plant organs along an elevational gradient[J]. AoB PLANTS,2020,12(3):plaa021.
    [24] PRESCOTT C E. Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils?[J]. Biogeochemistry,2010,101(1):133-149.
    [25] DAVIDSON E A,JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature,2006,440(7081):165-173.
    [26] TANG Z,XIONG Y,LIU Y,et al. Nitrogen transport pathways and source contributions in a typical agricultural watershed using stable isotopes and hydrochemistry[J] Water,2024,16(19):10.3390/w16192803
    [27] WANG X,JI X,XU Y J,et al. Multi-machine learning methods to predict spatial variation characteristics of total nitrogen at watershed scale:Evidences from the largest watershed(Yangtze River Watershed),Asian[J]. Science of the Total Environment,2024,949:175144.
    [28] National Bureau of Statistics of China. 2024 Statistical Communique on the National Economic and Social Development of the People's Republic of China[R]. 2025. 国家统计局. 中华人民共和国2024年国民经济和社会发展统计公报[R]. 2025.
    [29] PEÑUELAS J,POULTER B,SARDANS J,et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications,2013,4(1):2934.
    [30] MAUPIN M A,IVAHNENKO T. Nutrient loadings to streams of the continental united states from municipal and industrial effluent[J]. Journal of the American Water Resources Association,2011,47(5):950-964.
    [31] IVORRA L,CARDOSO P G,CHAN S K,et al. Can mangroves work as an effective phytoremediation tool for pesticide contamination? An interlinked analysis between surface water,sediments and biota[J]. Journal of Cleaner Production,2021,295:126334.
    [32] JIANG Z Q,KONG X M,JAVAID M Q,et al. Revealing the effects of industrial structure upgrading and environmental technologies on environmental quality:Evidence from Asia[J]. Environment,Development and Sustainability,2024.
    [33] WANG Q,YANG T,LI R. Economic complexity and ecological footprint:The role of energy structure,industrial structure,and labor force[J]. Journal of Cleaner Production,2023,412:137389.
    [34] HERING L,PONCET S. Environmental policy and exports:Evidence from Chinese cities[J]. Journal of Environmental Economics and Management,2014,68(2):296-318.
    [35] LIN H,WANG X,BAO G,et al. Heterogeneous Spatial Effects of FDI on CO2 Emissions in China[J]. Earth's Future,2022,10(1):e2021EF002331.
    [36] YAO M Y,HU M P,CHEN D J. Dynamic characteristics of net anthropogenic nitrogen inputs and riverine nitrogen outputs in the Yangtze River Basin during 1980—2015[J]. Environmental Science,2021,42(12):5777-5785. 姚梦雅,胡敏鹏,陈丁江. 1980—2015年长江流域净人为氮输入与河流氮输出动态特征[J]. 环境科学,2021,42(12):5777-5785.
    [37] WANG Z,CHEN S,CUI C,et al. Industry relocation or emission relocation? Visualizing and decomposing the dislocation between China's economy and carbon emissions[J]. Journal of Cleaner Production,2019,208:1109-1119.
    [38] FAN Y,NI Z,WANG S,et al. Whole process phosphorus management strategy construction with phosphorus load characteristics,driver and efficiency from the material flow perspective[J]. Journal of Cleaner Production,2021,279:122896.
    [39] CHENG Y H,MAO Y P,ZHANG H. Characteristics of net anthropogenic nitrogen and phosphorus inputs and pollution control suggestions in the Pearl River Delta[J]. Chinese Journal of Environmental Engineering,2022,16(6):2049-2060. 程元辉,毛宇鹏,张洪. 珠江三角洲地区人为氮磷净输入特征及污染管控建议[J]. 环境工程学报,2022,16(6):2049-2060.
    [40] COELHO M T P,BARRETO E,RANGEL T F,et al. The geography of climate and the global patterns of species diversity[J]. Nature,2023,622(7983):537-544.
    [41] YOU Y,YU J,NIE Z,et al. Transition of survival strategies under global climate shifts in the grape family[J]. Nature Plants,2024,10(7):1100-1111.
    [42] LI H L,ALI A,LUO X,et al. China's subtropical deciduous plants are more sensitive to climate change than evergreen plants by flowering phenology[J]. Global Change Biology,2024,30(2):e17168.
    [43] SHEN G,CHEN D,WU Y,et al. Spatial patterns and estimates of global forest litterfall[J]. Ecosphere,2019,10(2):e02587.
    [44] FU Y H,ZHAO H,PIAO S,et al. Declining global warming effects on the phenology of spring leaf unfolding[J]. Nature,2015,526(7571):104-107.
    [45] ZHANG W,FURTADO K,WU P,et al. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world[J]. Science Advances,2021,7(31):eabf8021.
    [46] KUANG X,LIU J,SCANLON B R,et al. The changing nature of groundwater in the global water cycle[J]. Science,2024,383(6686):eadf0630.
  • 加载中
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-02
  • 录用日期:  2025-05-21
  • 修回日期:  2025-05-18
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回