中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河中游流域地表水中酚类污染来源、分布特征及其生态风险

谢咏昌 刘权震 徐雄 林利华 杜川 王东红 林明利

谢咏昌, 刘权震, 徐雄, 林利华, 杜川, 王东红, 林明利. 黄河中游流域地表水中酚类污染来源、分布特征及其生态风险[J]. 环境工程, 2025, 43(12): 13-20. doi: 10.13205/j.hjgc.202512002
引用本文: 谢咏昌, 刘权震, 徐雄, 林利华, 杜川, 王东红, 林明利. 黄河中游流域地表水中酚类污染来源、分布特征及其生态风险[J]. 环境工程, 2025, 43(12): 13-20. doi: 10.13205/j.hjgc.202512002
XIE Yongchang, LIU Quanzhen, XU Xiong, LIN Lihua, DU Chuan, WANG Donghong, LIN Mingli. Source, distribution characteristics and ecological risk assessment of phenolic compounds in surface water of middle reach of the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 13-20. doi: 10.13205/j.hjgc.202512002
Citation: XIE Yongchang, LIU Quanzhen, XU Xiong, LIN Lihua, DU Chuan, WANG Donghong, LIN Mingli. Source, distribution characteristics and ecological risk assessment of phenolic compounds in surface water of middle reach of the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 13-20. doi: 10.13205/j.hjgc.202512002

黄河中游流域地表水中酚类污染来源、分布特征及其生态风险

doi: 10.13205/j.hjgc.202512002
基金项目: 

国家重点研发计划(2021YFC3200802-02);国家自然科学基金项目(22406193)

详细信息
    作者简介:

    谢咏昌(1997—),男,博士研究生,主要研究方向为水体中有机污染物筛查。ycxie_st@rcees.ac.cn

    通讯作者:

    王东红(1968—),女,研究员,主要研究方向为水环境中风险污染物的识别及其转化机制。dhwang@rcees.ac.cn

Source, distribution characteristics and ecological risk assessment of phenolic compounds in surface water of middle reach of the Yellow River Basin

  • 摘要: 通过分析黄河中游煤化工工业园区13种酚类化合物的排放特征,研究工业排水对黄河干流中酚类污染物的贡献及影响。结果表明:黄河中游5个工业园区排污口和18个河流断面(包括支流如汾河的断面采样点)分别检出6种和7种酚类化合物,其总浓度分别为115.66~38462.44,44.13~2568.32 ng/L。排污口和河流断面的主要酚类污染物均为苯酚、邻甲苯酚和对甲苯酚。酚类在工业园区排污口的排放总浓度普遍高于其上游和下游断面,且排污口相近的河流断面中酚类污染物种类及浓度占比相似,表明工业园区污水排放是黄河干流中酚类污染的重要来源之一。采用风险商的方法评估酚类污染的生态风险,结果表明苯酚、邻甲苯酚和对甲苯酚在大部分采样点中存在中、低生态风险,而汾河中下游河流的采样点普遍存在潜在生态风险,因此这些酚类污染物和汾河中下游流域需重点关注。研究可为黄河中游流域酚类污染治理提供理论支撑和科学依据。
  • [1] ZHONG W,WANG D,WANG Z. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin,China[J]. Environmental Pollution,2018,235:121-128.
    [2] MIN K,FREEMAN C,KANG H,et al. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment[J]. Biomedical Research International,2015,2015:731846-731854.
    [3] SONG H W,WANG D H,XU X,et al. Concentration distribution characteristics of 14 phenolic compounds in 24 typical drinking water sources in China[J]. Acta Scientiae Circumstantiae,2014,34(2):355-362. 宋瀚文,王东红,徐雄,等. 我国 24 个典型饮用水源地中 14 种酚类化合物浓度分布特征[J]. 环境科学学报,2014,34(2):355-362.
    [4] XU J,WANG P,GUO W F,et al. Seasonal and spatial distribution of nonylphenol in lanzhou reach of the yellow river in China[J]. Chemosphere,2006,65(9):1445-1451.
    [5] ZHOU W M,FU D Q,SUN Z G. Determination of black list of priority control pollutants in water in China[J]. Research Of Environmental Sciences,1991,4(6):9-12. 周文敏,傅德黔,孙宗光. 中国水中优先控制污染物黑名单的确定[J]. 环境科学研究,1991,4(6):9-12.
    [6] CHEN Y P,FU B J,ZHAO Y,et al. Sustainable development in the Yellow River Basin:issues and strategies[J]. Journal Of Clean Production,2020,263:121452-121463.
    [7] XIE F Y,YU M C,YUAN Q K,et al. Spatial distribution,pollution assessment,and source identification of heavy metals in the Yellow River[J]. Journal of Hazardous Materials,2022,436:129158-129170.
    [8] TANG H,ZHANG A N,YANG Z Z,et al. Pollution status and risk assessment of aromatic organic compounds in the water environment of the Kuye River Basin[J]. Journal of Hydroecology,2024,45(5):186-192. 唐慧,张爱宁,杨壮壮,等. 窟野河流域水环境中芳烃类有机物的污染状况及风险评价[J]. 水生态学杂志,2024,45(5):186-192.
    [9] LI J,SUN C J,CHEN W,et al. Surface water environmental characteristics and pollution source apportionment in the lower reaches of the Fenhe river[J]. Journal of Earth Environment,2022,13(4):380-392. 李皎,孙从建,陈伟,等. 汾河下游地表水环境特征及污染源解析[J]. 地球环境学报,2022,13(4):380-392.
    [10] HASSANSHAHIAN M,ABARIAN M,BAHRAMZADEH K,et al. Isolation and identification of phenol-degrading bacteria in the industrial wastewater from the coal tar mine of Zarand in Iran[J]. Desalination and Water Treatment,2019,147:125-134.
    [11] KUSWORO T D,KUMORO C,UTOMO D P. Phenol and ammonia removal in petroleum refinery wastewater using a poly(vinyl)alcohol coated polysulfone nanohybrid membrane[J]. Journal of Water Process Engineering,2021,39:101765-101774.
    [12] WANG J X,ZHAO Y H,JING H,et al. Research on the construction method of"permit-based index" based on the implementation report of sewage discharge permit[J]. Environmental Monitoring in China,2021,37(4):26-31. 王军霞,赵银慧,敬红,等. 基于排污许可证执行报告的“依证指数”构建方法研究[J]. 中国环境监测,2021,37(4):26-31.
    [13] LADEIA R R,REZENDE M V,SANTOS A M C. Phenolic compounds in water:review of occurrence,risk,and retention by membrane technology[J]. Journal of Environmental Management,2024,351:119432-119445.
    [14] KIM D H,CHOI S,PARK J,et al. Phenolic compounds in the freshwater environment in South Korea:occurrence and tissue-specific distribution[J]. Science of the Total Environment,2023,905:166914-166923.
    [15] ZHONG W J,WANG D H,XU X W,et al. Screening level ecological risk assessment for phenols in surface water of the Taihu Lake[J]. Chemosphere,2010,80(9):998-1005.
    [16] XU X,LIU Q,BAI L,et al. Transformation of bisphenol af during aqueous chlorination:kinetics,mechanisms,and influence of pH[J]. ACS ES&T Water,2020,1(2):449-458.
    [17] LIU Q Z,XU X,LIN L H,et al. Occurrence,distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants[J]. Science of the Total Environment,2021,789:147938-147949.
    [18] HERNANDO M D,MEZCUA M,FERNÁNDEZ-ALBA A R,et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents,surface waters and sediments[J]. Talanta,2006,69(2):334-342.
    [19] KONG J,ZHAO R F,BAI Y H,et al. Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS[J]. Fuel Processing Technology,2014,127:41-46.
    [20] GAO J,LIU L,LIU X,et al. Levels and spatial distribution of chlorophenols-2,4-dichlorophenol,2,4,6-trichlorophenol,and pentachlorophenol in surface water of China[J]. Chemosphere,2008,71(6):1181-1187.
    [21] ZHANG J K,FENG Q Y,ZHANG X Y,et al. Characteristics of nitrophenol wastewater treatment via a NZVI/microorganism coupling system[J]. Desalination and Water Treatment,2018,121:198-201.
    [22] YAHAYA A,OKOH O O,AGUNBIADE F O,et al. Occurrence of phenolic derivatives in buffalo river of Eastern Cape South Africa:exposure risk evaluation[J]. Ecotoxicology and Environmental Safety,2019,171:887-893.
    [23] RAMOS R L,LEBRON Y A R,MOREIRA V R,et al. Phenolic compounds in surface water:methodology and occurrence in Doce River,Brazil[J]. Environmental Monitoring and Assessment,2021,193(10):625-638.
    [24] WANG J Q,SUI Q,LYU S G,et al. Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources:a case study in a typical region adjacent to Taihu Lake watershed[J]. Science of the Total Environment,2020,722:137845-137856.
    [25] ZHOU M,ZHANG J,SUN C. Occurrence,ecological and human health risks,and seasonal variations of phenolic compounds in surface water and sediment of a potential polluted river basin in China[J]. International Journal of Environmental Research and Public Health,2017,14(10):1156-1168.
  • 加载中
计量
  • 文章访问数:  1139
  • HTML全文浏览量:  408
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 录用日期:  2025-03-02
  • 修回日期:  2025-02-20
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回