中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电絮凝-膜工艺对生活污水有机物的浓缩特性及其产甲烷潜力的影响研究

邱君杰 吴思源 杨媛 陈荣 胡以松

邱君杰, 吴思源, 杨媛, 陈荣, 胡以松. 电絮凝-膜工艺对生活污水有机物的浓缩特性及其产甲烷潜力的影响研究[J]. 环境工程, 2025, 43(12): 28-37. doi: 10.13205/j.hjgc.202512004
引用本文: 邱君杰, 吴思源, 杨媛, 陈荣, 胡以松. 电絮凝-膜工艺对生活污水有机物的浓缩特性及其产甲烷潜力的影响研究[J]. 环境工程, 2025, 43(12): 28-37. doi: 10.13205/j.hjgc.202512004
QIU Junjie, WU Siyuan, YANG Yuan, CHEN Rong, HU Yisong. Effects of electroflocculation-membrane process on concentration characteristics of organic matter in domestic wastewater and its methane production potential[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 28-37. doi: 10.13205/j.hjgc.202512004
Citation: QIU Junjie, WU Siyuan, YANG Yuan, CHEN Rong, HU Yisong. Effects of electroflocculation-membrane process on concentration characteristics of organic matter in domestic wastewater and its methane production potential[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 28-37. doi: 10.13205/j.hjgc.202512004

电絮凝-膜工艺对生活污水有机物的浓缩特性及其产甲烷潜力的影响研究

doi: 10.13205/j.hjgc.202512004
基金项目: 

国家自然科学青年基金项目(52300065);天津市水质科学与技术重点实验室开放基金(TJKLAST-PT-2023-05);环境模拟与污染控制国家重点联合实验室(清华大学)开放课题(24K16ESPCT)

详细信息
    作者简介:

    邱君杰(1999—),男,硕士研究生,主要研究方向为膜法污水处理与资源化。867697926@qq.com

    通讯作者:

    杨媛(1991—),女,副教授,主要研究方向为膜法污水处理与资源化。yuanyang@xauat.edu.cn

Effects of electroflocculation-membrane process on concentration characteristics of organic matter in domestic wastewater and its methane production potential

  • 摘要: 低有机物浓度的生活污水经过浓缩,可获得高有机物浓度的污水浓缩液,通过厌氧消化(AD)可回收化学能。基于实际生活污水的分级特性分析,构建了直接膜过滤工艺(DMF)与电絮凝-膜工艺(EFM),用于浓缩生活污水,经过1个浓缩周期,DMF工艺获得化学需氧量(COD)为1760 mg/L的浓缩液,EFM工艺浓缩液COD为2668.5 mg/L。DMF和EFM工艺均能有效截留沉降态有机物,且粒径>40 μm的颗粒物占比相较生活污水分别提升了约30.1%和21.8%,EFM工艺还可促进溶解态和胶体态颗粒物向悬浮态转化,并显著提高总氮(TN)和总磷(TP)浓缩效果,浓缩率分别达到23.9%和22.6%。由于电絮凝过程使用了铁阳极,EFM浓缩液还引入了Fe2O3、Fe3O4以及Fe2.95(PO42(OH)2等铁物种,且Fe(Ⅱ)/Fe(Ⅲ)主要以无定形的形式存在。生化甲烷潜力(BMP)实验结果表明:DMF浓缩液具备较高的产甲烷潜力(268.58~281.76 mL/g),而EFM浓缩液仅在粒径<5 μm和<0.45 μm的组分中表现出更强的产甲烷活性,其产甲烷潜力(P0)分别为(328.71±10.85),(317.84±10.20) mL/g。EFM系统处理1 m3生活污水能耗(298.20×10-4 kW·h/m3)高于DMF(20.04×10-4 kW·h/m3),但其与AD耦合后净产能可达到0.208 kW·h/m3,较DMF+AD(0.081 kW·h/m3)提升约1.5倍,这表明EFM系统在污水能源化方面具有显著优势。研究结果可为污水处理及资源回收提供技术参考和理论依据。
  • [1] KUOKKANEN V,KUOKKANEN T,RÄMÖ J,et al. Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes-Techno-economic studies[J]. Journal of Water Process Engineering,2015(8):50-57.
    [2] SARDARI K,ASKEGAARD J,CHIAO Y,et al. Electrocoagulation followed by ultrafiltration for treating poultry processing wastewater[J]. Journal of Environmental Chemical Engineering,2018,6(4):4937-4944.
    [3] LI H J,CHANG J L,LIU P F,et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental Microbiology,2015,17(5):1533-1547.
    [4] DENG W H. Process characteristics of integrated electroflocculation-membrane for enhancing wastewater Carbon sources pre-concentration and methane fermentation[D]. Xi'an:Xi'an University of Architecture and Technology,2024. 邓伟航. 电絮凝-膜耦合强化污水碳源浓缩及甲烷发酵的工艺特性研究[D]. 西安:西安建筑科技大学,2024.
    [5] GUDE V G. Energy and water autarky of wastewater treatment and power generation systems[J]. Renewable and Sustainable Energy Reviews,2015,45:52-68.
    [6] HU Y S,WANG X C,SUN Q Y,et al. Cpowdered activated carbon-dynamic membrane bioreactor(PAC-DMBR)process with high flux by gravity flow:operational performance and sludge properties[J]. Bioresource Technology,2017,223:65-73.
    [7] 环境保护部. 水质 五日生化需氧量(BOD₅)的测定 稀释与接种法:HJ 505—2009[S]. 北京:中国环境科学出版社,2009.
    [8] 国家技术监督局. 水质 总磷的测定 钼酸铵分光光度法:GB/T 11893—1989[S]. 北京:中国标准出版社,1989.
    [9] 国家技术监督局. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法:GB/T 11894—1989[S]. 北京:中国标准出版社,1989.
    [10] 环境保护部. 水质 氨氮的测定 纳氏试剂分光光度法:HJ 535—2009[S]. 北京:中国环境科学出版社,2009.
    [11] GINKEL S V,SUNG S,LAY J. Biohydrogen production as a function of pH and substrate concentration[J]. Environmental Science& Technology,2001,35(24):4726-4730.
    [12] SOPHONSIRI C,MORGENROTH E. Chemical composition associated with different particle size fractions in municipal,industrial,and agricultural wastewaters[J]. Chemosphere,2004,55(5):691-703.
    [13] COSSU R,LAI T,SANDON A. Standardization of BOD5/COD ratio as a biological stability index for MSW[J]. Waste Management,2012,32(8):1503-1508.
    [14] SHI B G. Discussion on the inflow water quality of sewage treatment plant of small towns[J]. Journal of Municipal Technology,2013,31(3):125-127. 石必刚. 小城镇污水厂进水水质特性探讨[J]. 市政技术,2013,31(3):125-127.
    [15] ZHANG L L,CHEN L,GUO X F,et al. Characterization of influent water quality in southern and northern wastewater treatment plants[J]. Water Supply and Drainage,2012,38(1):45-49. 张玲玲,陈立,郭兴芳,等. 南北方污水处理厂进水水质特性分析[J]. 给水排水,2012,38(1):45-49.
    [16] RAVNDAL K T,OPSAHL E,BAGI A,et al. Wastewater characterisation by combining size fractionation,chemical composition and biodegradability[J]. Water Research,2018,131:151-160.
    [17] MA M D. Pollutants removal from domestic wastewater using electrocoagulation/electro-oxidation method[D]. Beijing:China University of Geosciences,2015 马马度. 电絮凝/电氧化法处理生活污水中污染物质的研究[D]. 北京:中国地质大学,2015.
    [18] YANG Y,HU Y S,DUAN A,et al. Characterization of preconcentrated domestic wastewater toward efficient bioenergy recovery:Applying size fractionation,chemical composition and biomethane potential assay[J]. Bioresource Technology,2021,319:124144.
    [19] LE T S,DANG N M,TRAN D T. Performance of coupling electrocoagulation and biofiltration processes for the treatment of leachate from the largest landfill in Hanoi,Vietnam:Impact of operating conditions[J]. Separation and Purification Technology,2021,255:117677.
    [20] BAEK G,KIM J,LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresource Technology,2014,166:596-601.
    [21] WANG M W,ZHAO Z Q,NIU J F,et al. Potential of crystalline and amorphous ferric oxides for biostimulation of anaerobic digestion[J]. ACS Sustainable Chemistry& Engineering,2018,7(1):697-708.
    [22] OMWENE P I,KOBYA M,CAN O T. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes[J]. Ecological Engineering,2018,123:65-73.
    [23] YANG Y H,LI Y W,MAO R,et al. Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation:efficiency and mechanism[J]. Separation and Purification Technology,2022,286:120439.
    [24] BIESINGER M C,PAYNE B P,GROSVENOR A P,et al. Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J]. Applied Surface Science,2011,257(7):2717-2730.
    [25] YAMASHITA T,HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied surface science,2008,254(8):2441-2449.
    [26] XIONG J Q,YU S C,HU Y S,et al. Applying a dynamic membrane filtration(DMF)process for domestic wastewater preconcentration:Organics recovery and bioenergy production potential analysis[J]. Science of the Total Environment,2019,680:35-43.
    [27] ABDELRAHMAN A M,KOSAR S,GULHAN H,et al. Impact of primary treatment methods on sludge characteristics and digestibility,and wastewater treatment plant-wide economics[J]. Water Research,2023,235:119920.
    [28] KIM J,KIM K,YE H,et al. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environmental science& technology,2011,45(2):576-581.
    [29] KONG Z,LI L,WU J,et al. Evaluation of bio-energy recovery from the anaerobic treatment of municipal wastewater by a pilot-scale submerged anaerobic membrane bioreactor(AnMBR)at ambient temperature[J]. Bioresource Technology,2021,339:125551.
  • 加载中
计量
  • 文章访问数:  1036
  • HTML全文浏览量:  351
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09
  • 录用日期:  2025-04-23
  • 修回日期:  2025-03-24
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回