中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河流域能源消费二氧化碳排放时空格局及其影响因素

张佳丽 武荣伟

张佳丽, 武荣伟. 黄河流域能源消费二氧化碳排放时空格局及其影响因素[J]. 环境工程, 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016
引用本文: 张佳丽, 武荣伟. 黄河流域能源消费二氧化碳排放时空格局及其影响因素[J]. 环境工程, 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016
ZHANG Jiali, WU Rongwei. Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016
Citation: ZHANG Jiali, WU Rongwei. Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 141-152. doi: 10.13205/j.hjgc.202512016

黄河流域能源消费二氧化碳排放时空格局及其影响因素

doi: 10.13205/j.hjgc.202512016
基金项目: 

重庆市社科基金博士项目(2022BS080);重庆工商大学高层次人才科研启动项目(2356028);重庆工商大学校级项目(1956027,2152030)

详细信息
    作者简介:

    张佳丽(2000—),女,硕士研究生在读,主要研究方向为城市与区域规划。zhangjiali@ctbu.edu.cn

    通讯作者:

    武荣伟(1989—),男,副教授,博士,主要研究方向为人口地理、城市与区域规划。rongwei@ctbu.edu.cn

Spatio-temporal pattern and influencing factors of CO2 emissions from energy consumption in the Yellow River Basin

  • 摘要: 通过黄河流域2000—2022年能源消费数据、人口栅格数据与夜间灯光数据,估算黄河流域地级行政区(以下简称“城市”)CO2排放量;采用探索性时空数据分析方法,揭示人均CO2排放的时空格局;借助STIRPAT模型,利用空间面板数据回归方法,揭示黄河流域城市人均CO2排放的影响因素。结果表明:1)黄河流域人均CO2排放呈现中游地区高,上游与下游地区低的分布特征;2)2000—2022年,黄河流域城市人均CO2排放量时空动态呈现总体稳定,局部变化的特征。总体稳定体现在,人均CO2时空凝聚率为81.5%,未发生关联形态转移的城市占主导地位;局部动态体现在,资源型城市以及部分经济发达地区城市人均CO2空间关联结构发生变迁,从两类时空跃迁的子类型来看,Type1(10.8%)>Type2(7.7%),表明部分黄河流域城市人均CO2存在空间关联锁定;3)空间面板数据回归结果表明:黄河流域经济增长与人均CO2排放量呈正相关;城镇化水平、人口规模、第三产业增加值占GDP比重、固定资产投资占GDP比重、进出口总额占GDP比重与人均CO2排放呈负相关;而第二产业增加值占GDP比重对人均CO2排放关系尚不确定。研究结果为黄河流域各地区深度合作、协同减排提供了决策参考,有助于推动黄河流域实现生态保护与高质量发展。
  • [1] IPCC. Summary for Policymakers[M]//MASSON-DELMOTTE V,ZHAI P,PIRANI A,et al. Climate Change 2021:The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom; New York,NY,USA:Cambridge University Press,2021:3-32.
    [2] SUN Y. Impact of human activities on climate system:an interpretation of Chapter Ⅲ of WGⅠ report of IPCC AR6[J]. Transactions of Atmospheric Sciences,2021,44(5):654-657. 孙颖. 人类活动对气候系统的影响:解读 IPCC 第六次评估报告第一工作组报告第三章[J]. 大气科学学报,2021,44(5):654-657.
    [3] REN H Y,DU R L,XIE G L,et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering,2023,41(10):195-203. 任宏洋,杜若岚,谢贵林,等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程,2023,41(10):195-203.
    [4] LIU C M,QIAN X Y. Prediction of carbon emissions from energy consumption in China under the"dual carbon" goal[J]. Resources Science,2023,45(10):1931-1946. 刘春梅,钱啸吟.“双碳” 目标下中国能源消费碳排放量预测[J]. 资源科学,2023,45(10):1931-1946.
    [5] XIA S Y,YANG Y. Spatial and temporal differentiation of carbon balance and carbon compensation zoning in the Beijing-Tianjin-Hebei urban agglomeration based on main functional zones[J]. Acta Geographica Sinica,2022,77(3):679-696. 夏四友,杨宇. 基于主体功能区的京津冀城市群碳收支时空分异与碳补偿分区[J]. 地理学报,2022,77(3):679-696.
    [6] CHEN Z M,WU S M,MA W B,et al. Driving forces of carbon dioxide emission for China's cities:empirical analysis based on extended STIRPAT Model[J]. China Population,Resources and Environment,2018,28(10):45-54. 陈占明,吴施美,马文博,等. 中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的 STIRPAT 模型[J]. 中国人口・资源与环境,2018,28(10):45-54.
    [7] KONG X Y,LI Q. Research progress of spatial estimation of energy carbon emissions[J]. Science of Surveying and Mapping,2022,47(8):146-156. 孔潇扬,李琦. 能源碳排放的空间估算研究进展[J]. 测绘科学,2022,47(8):146-156.
    [8] SU Y X,CHEN X Z,YE Y Y,et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geographica Sinica,2013,68(11):1513-1526. 苏泳娴,陈修治,叶玉瑶,等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报,2013,68(11):1513-1526.
    [9] CHEN J D,GAO M,CHENG S L,et al. County-level CO2 emissions and sequestration in China during 1997-2017[J]. Scientific Data,2020,7(1):1-14.
    [10] GHOSH T,ELVIDGE C D,SUTTON P C,et al. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery[J]. Energies,2010,3(12):1895-1913.
    [11] OU J,LIU X,LI X,et al. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion co2 emissions:a comparison with DMSP-OLS nighttime light data[J]. PLoS One,2015,10(9):e0138310.
    [12] GUO B,XIE T T,ZHANG W C,et al. Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013-2019[J]. Science of the Total Environment,2023,905:166312.
    [13] DU H B,WEI W,ZHANG X Y,et al. Spatio-temporal evolution and influencing factors of energy-related carbon emissions in the Yellow River Basin:based on the DMSP/OLS and NPP/VIIRS nighttime light data[J]. Geographical Research,2021,40(7):2051-2065. 杜海波,魏伟,张学渊,等. 黄河流域能源消费碳排放时空格局演变及影响因素:基于 DMSP/OLS 与 NPP/VIIRS 夜间灯光数据[J]. 地理研究,2021,40(7):2051-2065.
    [14] WU Y,SHI K,CHEN Z,et al. Developing improved time-series DMSP-OLS-Like data(1992-2019)in China by integrating DMSP-OLS and SNPP-VIIRS[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14.
    [15] CHENG Y,WANG Z,YE X,et al. Spatiotemporal dynamics of carbon intensity from energy consumption in China[J]. Journal of Geographical Sciences,2014,24(6):1109-1124.
    [16] ELVIDGE C D,ZISKIN D,BAUGH K E,et al. A fifteen-year record of global natural gas flaring derived from satellite data[J]. Energies,2009,2(3):595-622.
    [17] CHEN H,ZHANG X,WU R,et al. Revisiting the environmental Kuznets curve for city-level CO2 emissions:based on corrected NPP-VIIRS nighttime light data in China[J]. Journal of Cleaner Production,2020,268:121575.
    [18] YE X,REY S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science,2013,50(1):315-339.
    [19] ANSELIN L. Local indicators of spatial association—LISA[J]. Geographical Analysis,1995,27(2):93-115.
    [20] REY S J,MURRAY A T,ANSELIN L. Visualizing regional income distribution dynamics[J]. Letters in Spatial and Resource Sciences,2011,4(1):81-90.
    [21] YORK R,ROSA E A,DIETZ T. STIRPAT,IPAT and ImPACT:analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365.
    [22] WANG S J,XIE Z H,WANG Z H. The spatiotemporal pattern evolution and influencing factors of CO2 emissions at the county level of China[J]. Acta Geographica Sinica,2021,76(12):3103-3118. 王少剑,谢紫寒,王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报,2021,76(12):3103-3118.
    [23] CHEN J Q,LI X S,GENG Y W,et al. Mechanism analysis and empirical research on urbanization and carbon emissions in China:based on the perspective of economic development,population transfer,and urban expansion[J]. Journal of Natural Resources,2024,39(6):1399-1417. 陈姜全,李效顺,耿艺伟,等. 中国城镇化与碳排放机制分析及实证研究:基于经济发展、人口转移和城镇扩张视角[J]. 自然资源学报,2024,39(6):1399-1417.
    [24] LIU J,GE X,ZHAO Z Y. Research on spatio-temporal evolution of carbon emissions in North China urban agglomeration and its influencing factors[J]. Environmental Engineering,2023,41(10):204-212. 刘杰,葛潇,赵振宇. 华北城市群碳排放时空演变格局及影响因素研究[J]. 环境工程,2023,41(10):204-212.
    [25] WEN H X,CHEN Z,YANG Q,et al. Driving forces and mitigating strategies of CO2 emissions in China:a decomposition analysis based on 38 industrial sub-sectors[J]. Energy,2022,245:123262.
    [26] MO M,HAN S L. Does foreign trade contribute to carbon emissions? Based on the empirical test of ASEAN countries[J]. Journal of Guangxi University(Philosophy and Social Science),2021,43(4):122-128. 莫敏,韩松霖. 对外贸易会加剧碳排放吗?基于东盟国家的实证检验[J]. 广西大学学报(哲学社会科学版),2021,43(4):122-128.
    [27] ZHANG H. Strategic interaction of regional environmental regulation:an explanation on the universality of incomplete enforcement of environmental regulation[J]. China Industrial Economics,2016(7):74-90. 张华. 地区间环境规制的策略互动研究:对环境规制非完全执行普遍性的解释[J]. 中国工业经济,2016(7):74-90.
    [28] ZHANG H M,YUAN P F,ZHU Z S. The decoupling effect and emission reduction path of carbon emissions in the Yellow River Basin[J]. Resources Science,2022,44(1):59-69. 张华明,元鹏飞,朱治双. 黄河流域碳排放脱钩效应及减排路径[J]. 资源科学,2022,44(1):59-69.
    [29] MIAO C H,HU Z Q,GENG F J,et al. Characteristics of economic evolution and the influencing factors of resource-dependent cities in China:the role of path dependence,vulnerability and path creation[J]. Geographical Research,2018,37(7):1268-1281. 苗长虹,胡志强,耿凤娟,等. 中国资源型城市经济演化特征与影响因素:路径依赖、脆弱性和路径创造的作用[J]. 地理研究,2018,37(7):1268-1281.
    [30] WANG L C,YANG T T. Types and spatiotemporal change characteristics of population shrinking county seats in the Yellow River Basin[J]. Resources Science,2024,46(2):336-351. 王录仓,杨婷婷. 黄河流域人口收缩县城类型及其时空演化特征[J]. 资源科学,2024,46(2):336-351.
    [31] WU R W,WANG Y X,WANG H Y,et al. Spatio-temporal patterns and determinants of highly skilled talents in China,2010-2020[J]. World Regional Studies,2024,33(5):987-999. 武荣伟,王远鑫,王堠崟,等. 2010—2020 年中国县域高技能人才时空格局及其影响因素[J]. 世界地理研究,2024,33(5):987-999.
    [32] HAN S S,MIAO C H,LI Y C. Effects of urban polycentric spatial structure on carbon emissions in the Yellow River Basin[J]. Geographical Research,2023,42(4):936-954. 韩帅帅,苗长虹,李奕灿. 黄河流域城市多中心空间结构对碳排放的影响研究[J]. 地理研究,2023,42(4):936-954.
    [33] ZHANG K Y,ZHANG Y. The evolution of regional economic disparity in the Yellow River Basin at different spatial scales[J]. Economic Geography,2020,40(7):1-11. 张可云,张颖. 不同空间尺度下黄河流域区域经济差异的演变[J]. 经济地理,2020,40(7):1-11.
  • 加载中
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-13
  • 录用日期:  2024-10-13
  • 修回日期:  2024-09-20
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回