中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Informer模型的住宅室内PM2.5浓度预测与模型优化研究

孙文 阎卫东 黄凯良 宋嘉森

孙文, 阎卫东, 黄凯良, 宋嘉森. 基于Informer模型的住宅室内PM2.5浓度预测与模型优化研究[J]. 环境工程, 2025, 43(12): 161-168. doi: 10.13205/j.hjgc.202512018
引用本文: 孙文, 阎卫东, 黄凯良, 宋嘉森. 基于Informer模型的住宅室内PM2.5浓度预测与模型优化研究[J]. 环境工程, 2025, 43(12): 161-168. doi: 10.13205/j.hjgc.202512018
SUN Wen, YAN Weidong, HUANG Kailiang, SONG Jiasen. Prediction of residential indoor PM2.5 concentration and model optimization based on Informer model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 161-168. doi: 10.13205/j.hjgc.202512018
Citation: SUN Wen, YAN Weidong, HUANG Kailiang, SONG Jiasen. Prediction of residential indoor PM2.5 concentration and model optimization based on Informer model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 161-168. doi: 10.13205/j.hjgc.202512018

基于Informer模型的住宅室内PM2.5浓度预测与模型优化研究

doi: 10.13205/j.hjgc.202512018
基金项目: 

国家自然科学基金项目“严寒地区住宅厨房排烟耦合过程机理与热环境改善方法研究”(52178082)

详细信息
    作者简介:

    孙文(1993—),女,博士研究生,主要研究方向为居住建筑室内空气品质。sunwengoal@163.com

    通讯作者:

    黄凯良(1985—),男,教授,主要研究方向为室内空气质量保障技术、建筑通风节能等。huangkailiang_v@163.com

Prediction of residential indoor PM2.5 concentration and model optimization based on Informer model

  • 摘要: 在严寒地区供暖季期间,住宅室内常存在较高浓度的PM2.5污染,准确预测室内PM2.5污染水平对于制定有效的净化措施至关重要。针对严寒地区7户住宅在供暖季期间的室内PM2.5浓度及居住者的开窗行为进行了分析,得出住宅客厅的PM2.5浓度超标率可达35.94%,室内日平均开窗持续时长较短。同时利用室内PM2.5历史浓度数据对Informer模型进行训练,将住宅开窗时长作为特征值输入,实现对室内PM2.5浓度的预测。通过对比不同特征输入策略、输入步长、预测范围下和加入滚动预测后模型的预测表现,综合评估后确定了模型实现高精度预测的最佳配置。该模型能够预测未来一段时间内的室内PM2.5浓度,其预测性能的评价指标平均绝对误差(MAE)为10.70 μg/m3,均方根误差(RMSE)为13.75 μg/m3及可决系数R2为0.795。与TCN-LSTM模型相比,Informer模型的R2提高了13.9%。优化后的模型呈现了更加精确的预测效果。
  • [1] HU W,DOWNWARD G S,REISS B,et al. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer[J]. Environmental Science and Technology,2014,48(15):8456-8464.
    [2] SUNDELL J. On the history of indoor air quality and health[J]. Indoor Air,2004,14(S7):51-58.
    [3] MA Y. Research on air quality prediction based on deep learning[D]. Ji'nan:Shandong University,2023. 马园. 基于深度学习的空气质量预测研究[D]. 济南:山东大学,2023.
    [4] ZHU Y M,XU A L,SUN Qiang. New progress in air quality forecasting methods based on deep learning[J]. Environmental Monitoring in China,2020,36(3):10-18. 朱晏民,徐爱兰,孙强. 基于深度学习的空气质量预报方法新进展[J]. 中国环境监测,2020,36(3):10-18.
    [5] DAI X L. Research on data mining and intelligent prediction of residential indoor air quality based on internet of things platform[D]. Tianjin:Tianjin University,2021. 戴希磊. 基于物联网平台的住宅室内空气质量数据挖掘及其智能预测研究[D]. 天津:天津大学,2021.
    [6] ELBAYOUMI M,RAMLI N A,YUSOF N F F M. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5-10 and PM2.5 concentrations in naturally ventilated schools[J]. Atmospheric Pollution Research,2015,6(6):1013-1023.
    [7] LOY-BENITEZ J,VILELA P,LI Q,et al. Sequential prediction of quantitative health risk assessment for the fine particulate matter in an underground facility using deep recurrent neural networks[J]. Ecotoxicology and Environmental Safety,2019,169:316-324.
    [8] ZHANG N,BAI Z X,ZHANG H L,et al. Deployment,optimization and data prediction of Internet of Things for indoor air quality[J]. Sci China. Inf Sci,2022,52(1):160-175. 张楠,白子轩,张泓亮,等. 室内空气质量物联网部署、优化和数据预测[J]. 中国科学:信息科学,2022,52(1):160-175.
    [9] DONG H,SUN L,OUYANG F. PM2.5 concentration prediction based on Informer[J]. Environmental Engineering,2022,40(6):48-54. 董浩,孙琳,欧阳峰. 基于Informer的PM2.5浓度预测[J]. 环境工程,2022,40(6):48-54.
    [10] HUANG K L,SUN W,FENG G H,et al. Indoor air quality analysis of 8 mechanically ventilated residential buildings in northeast China based on long-term monitoring[J]. Sustainable Cities and Society,2020,54:101947.
    [11] ZHOU H Y,LI J X,ZHANG S H,et al. Expanding the prediction capacity in long sequence time-series forecasting[J]. Artificial Intelligence,2023,318:103886.
    [12] CLEVERT D A,UNTERTHINER T,HOCHREITER S. Fast and accurate deep network learning by exponential linear units(ELUs)[EB/OL].(2015-11-24)[ 2025-12-12]. arXiv:1511.07289[cs.LG].
    [13] KINGMA D P,BA J. Adam:A method for stochastic optimization[EB/OL].(2014-12-22)[ 2025-12-12]. arXiv:1412.6980[cs.LG].
    [14] REN Y,WANG S Y,XIA B S. Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction[J]. Atmospheric Pollution Research,2023,14(4):101703.
    [15] HUANG K L,SONG J S,FENG G H,et al. Indoor air quality analysis of residential buildings in northeast China based on field measurements and longtime monitoring[J]. Building and Environment,2018,144:171-183.
    [16] State Administration for Market Regulation,Standardization Administration of the People's Republic of China. GB/T 18883-2022:Indoor air quality standard[S]. Beijing:China Standards Press,2022. 国家市场监督管理总局,国家标准化管理委员会. GB/T 18883—2022:室内空气质量标准[S]. 北京:中国标准出版社,2022.
  • 加载中
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-05
  • 录用日期:  2025-01-28
  • 修回日期:  2025-01-10
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回