中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦炉上升管放散废气扩散规律分析及低能耗高效集气系统设计

赵晨豪 党小庆 晋海廷 马帅 黄家玉 吉硕 郑华春 屈嘉鑫

赵晨豪, 党小庆, 晋海廷, 马帅, 黄家玉, 吉硕, 郑华春, 屈嘉鑫. 焦炉上升管放散废气扩散规律分析及低能耗高效集气系统设计[J]. 环境工程, 2025, 43(12): 169-177. doi: 10.13205/j.hjgc.202512019
引用本文: 赵晨豪, 党小庆, 晋海廷, 马帅, 黄家玉, 吉硕, 郑华春, 屈嘉鑫. 焦炉上升管放散废气扩散规律分析及低能耗高效集气系统设计[J]. 环境工程, 2025, 43(12): 169-177. doi: 10.13205/j.hjgc.202512019
ZHAO Chenhao, DANG Xiaoqing, JIN Haiting, MA Shuai, HUANG Jiayu, JI Shuo, ZHENG Huachun, QU Jiaxin. Analysis of dispersion patterns of waste gas emission from coke oven ascension pipes and design of a low-energy, high-efficiency gas collection system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 169-177. doi: 10.13205/j.hjgc.202512019
Citation: ZHAO Chenhao, DANG Xiaoqing, JIN Haiting, MA Shuai, HUANG Jiayu, JI Shuo, ZHENG Huachun, QU Jiaxin. Analysis of dispersion patterns of waste gas emission from coke oven ascension pipes and design of a low-energy, high-efficiency gas collection system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 169-177. doi: 10.13205/j.hjgc.202512019

焦炉上升管放散废气扩散规律分析及低能耗高效集气系统设计

doi: 10.13205/j.hjgc.202512019
基金项目: 

陕西省重点研发计划项目(2024SF-ZDCYL-05-06)

详细信息
    作者简介:

    赵晨豪(2000—),男,硕士研究生,主要研究方向为大气污染控制技术及设备。Zhaoch757699@163.com

    通讯作者:

    党小庆(1964—),男,博士,教授,主要研究方向为大气污染控制技术及设备。dangxq@163.com

Analysis of dispersion patterns of waste gas emission from coke oven ascension pipes and design of a low-energy, high-efficiency gas collection system

  • 摘要: 低能耗高效地控制焦炉推焦前晾炉过程所产生的高温含尘烟气的无组织排放,是焦化行业超低排放亟待解决的难题。针对某焦化厂现有上升管废气收集系统收集效率低、运行能耗高的问题,采用数值模拟方法对上升管放散废气扩散规律进行分析,优化废气收集系统提高烟尘收集效率,并提出基于PLC的自动化控制系统。结果表明:现有废气收集系统集气罩吸入速度衰减幅度较大,烟尘逸散严重,收集率为40%;增设屋顶集气仓室能够缓冲烟气流速,在设计风量下可实现对烟尘的100%收集;相较于单个集气罩运行,2个集气罩同时运行能够有效抑制烟尘向两侧逸散,集气罩所需排风量更小;PLC系统结合焦炉推焦串序可实现上升管废气收集系统全自动智能化控制,废气收集系统风量由8×105 m3/h减少至1.6×105 m3/h,系统能耗降低80%。该研究可为低能耗高效控制上升管废气逸散提供参考。
  • [1] ZHU T,WANG X,YU Y,et al. Multi-process and multi-pollutant control technology for ultra-low emissions in the iron and steel industry[J]. Journal of Environmental Sciences,2023,123(1):83-95.
    [2] DYAKOV S N,AREDAKOV D A,Iovanovich D. Dust free coke discharge on the machine side of coke ovens[J]. Coke& Chemistry,2014,57(2):51-54.
    [3] PLARCYZK E,SOWA F,KAISER M,et al. Emissions at coke plants:european environmental regulations and measures for emission control[J]. Transactions of the Indian Institute of Metals,2013,66(5/6):723-730.
    [4] GAO Z F,ZHANG X H,ZHAO W J,et al. Characteristic analysis of VOCs emitted from a typical coking plant[J]. Research of Environmental Sciences,2019,32(9):1540-1545. 高志凤,张晓红,赵文娟,等. 典型焦化厂大气挥发性有机物排放表征分析[J]. 环境科学研究,2019,32(9):1540-1545.
    [5] TELENGA-KOPYCZYŃSKA J,JONEK-KOWALSKA I. Algorithm for selecting best available techniques in polish coking plants supporting multi-criteria investment decisions in european environmental conditions[J]. Energies,Multidisciplinary Digital Publishing Institute,2021,14(9):2631.
    [6] MAKGATO S S,FALCON R M S,CHIRWA E M N. The effect of recycling coke oven tar on environmental pollution,coke quality,personnel and process safety[J]. Process Safety and Environmental Protection,2019,126:141-149.
    [7] RUDYKA V I,KRAVCHENKO S A,SOLOVJOV M A,et al. Innovations in world cokemaking technologies:a report on the ESTAD 2019 Steel Conference[J]. Coke and Chemistry,2020,63(6):283-293.
    [8] KOCHANSKI U. Reducing emissions at coke ovens with the pressure regulation system PROven[J]. Steel Times International,2003(2):27.
    [9] GU X,ZHAI L G. Discussion on comprehensive particulate matter emission control for 6 m coke oven[J]. Fuel& Chemical Processes,2021,52(3):58-60. 谷啸,翟连国. 简析6 m焦炉机侧烟尘综合治理[J]. 燃料与化工,2021,52(3):58-60.
    [10] LU L,YAO X,YAN Z,et al. Life cycle cost of coke dry quenching waste heat recovery-mediated power generation[J]. Journal of Cleaner Production,2024,446:141161.
    [11] CAVALIERE P. Coke making:most efficient technologies for greenhouse emissions abatement[M]. Cham:Springer International Publishing,2019:39-110.
    [12] XIE C B,QUAN M F,CAO Z X,et al. Improvement of fume capture efficiency of side suction hood with parallel-flow supply air[J]. Environmental Engineering,2021,39(10):101-109. 谢春波,权梦凡,曹智翔,等. 平行流送风对侧吸排风罩烟气捕集效率的提升[J]. 环境工程,2021,39(10):101-109.
    [13] WANG L L,XIAO Y,ZHEN R Q. Environmental impact analysis of the centralized governance for coke oven fugitive dust in the emission of benzo[a] pyrene[J]. Safety and Environmental Engineering,2017,24(5):90-93. 王璐璐,肖莹,甄瑞卿. 焦炉逸散烟尘集中治理对苯并[a]芘排放的环境影响分析[J]. 安全与环境工程,2017,24(5):90-93.
    [14] JOUNDALE S B,SUTAR D,SADANANDAN S. Development of battery machine automation using optimised auto schedule for coke ovens[C]// 2017 International Conference on Computing Methodologies and Communication(ICCMC). Erode:IEEE,2017:194-199.
    [15] WANG H,ZHANG P,ZHU F Q,et al. Simulation study on diffusion and collection characteristics of high temperature smoke and dust in blast furnace cast house[J]. Environmental Engineering,2020,38(11):123-129. 王珲,张璞,朱法强,等. 高炉出铁场高温烟尘扩散与捕集特性模拟[J]. 环境工程,2020,38(11):123-129.
    [16] RIM D,WALLACE L,NABINGER S,et al. Reduction of exposure to ultrafine particles by kitchen exhaust hoods:The effects of exhaust flow rates,particle size,and burner position[J]. Science of the Total Environment,2012,432:350-356.
    [17] SONG G J,YANG L,SHEN H G. A CFD study on optimal venting volume and air flow distribution in a special designed hood system for controlling dust flow[J]. China Foundry,2011,8(3):316-320.
    [18] GENG X W,YAN J X. Optimization of dust control measures in steelmaking electric furnace workshop based on FLUENT[J]. Journal of Safety Science and Technology,2021,17(9):163-168. 耿晓伟,阎晶雪. 基于FLUENT的炼钢电炉车间粉尘控制措施优化[J]. 中国安全生产科学技术,2021,17(9):163-168.
    [19] HUANG Y Q,JIANG C,WANG Y,et al. Flow field characteristics of flue gas and exhaust system optimization in electric furnace[J]. Heating Ventilating& Air Conditioning,2018,48(11):22-28. 黄艳秋,姜闯,王怡,等. 电炉烟气流场特性及排风系统优化研究[J]. 暖通空调,2018,48(11):22-28.
    [20] SUN G H,YANG K M,LEI W J. Study on pollutant filling rule and accident exhaust in coke oven hood[J]. Energy Conservation,2022,41(5):56-61. 孙国宏,杨开敏,雷文君. 焦炉炉罩内污染物填充规律及事故排风研究[J]. 节能,2022,41(5):56-61.
    [21] HUANG Z,DANG X Q,LI S J,et al. Numerical simulation and application on resistance balance of VOCs collection system in different working modes[J]. Chinese Journal of Environmental Engineering,2020,14(2):440-447. 黄准,党小庆,李世杰,等. 不同工作模式下VOCs废气收集系统阻力平衡数值模拟与应用[J]. 环境工程学报,2020,14(2):440-447.
    [22] TAO W,GAO X,SUN A. Coke oven pushing plan optimization scheduling research based on improved ant colony algorithm[R]. 2015 34th Chinese Control Conference(CCC). Hangzhou:IEEE,2015:2743-2746.
    [23] LIU W L,DING Y,ZHOU R,et al. Numerical simulation and analysis of structure parameters of push-pull hood for capturing flue gas emitted from the ladle[J]. Environmental Engineering,2014,32(2):81-86. 刘文龙,丁毅,周睿,等. 钢包烟气捕集用吹吸式排风罩结构参数的数值模拟试验分析[J]. 环境工程,2014,32(02):81-86.
    [24] SHAHEED R,MOHAMMADIAN A,KHEIRKAHAH GILDEH H. A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels[J]. Environmental Fluid Mechanics,2019,19(2):543-568.
    [25] KHALAJI M N,KOCA A,KOTCIOĞLU İ. Investigation of numerical analysis velocity contours k-ε Model of RNG,standard and realizable turbulence for different geometries[J]. International Journal of Innovative Research and Reviews,2019,3(2):29-34.
    [26] WANG F J. Computational fluid dynamics analysis[M]. Beijing:Tsinghua University Press,2004. 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2004.
    [27] LI C Q. Characterization of air pollutants emitted from coking production[D]. Chongqing:Southwest University,2009. 李从庆. 炼焦生产大气污染物排放特征研究[D]. 重庆:西南大学,2009.
    [28] ALLETTO M,BREUER M. One-way,two-way and four-way coupled LES predictions of a particle-laden turbulent flow at high mass loading downstream of a confined bluff body[J]. International Journal of Multiphase Flow,2012,45:70-90.
    [29] WANG Q,FENG J,SUN B,et al. Numerical simulation research on gas-solid two phase flow in oil shale circulating fluidized bed[J]. Energy Procedia,2012,17:851-860.
    [30] DUAN M,WANG Y,GAO D,et al. Modeling dispersion mode of high-temperature particles transiently produced from industrial processes[J]. Building and Environment,2017,126:457-470.
    [31] KONG L X,SONG G J,ZHAO H,et al. Optimization study of airflow organization of aerial mobile fume trapping hood in foundry workshop[J]. Foundry,2024,73(7):923-932. 孔令旭,宋高举,赵虎,等. 铸造车间空中移动式烟气捕集罩气流组织优化研究[J]. 铸造,2024,73(7):923-932.
    [32] WANG Y,LIU Q H,HUANG Y Q,et al. Analysis and optimization design method of exhaust hood capture efficiency above buoyant jet[J]. Environmental Engineering,2015,33(1):90-94. 王怡,刘秋寒,黄艳秋,等. 浮射流上方排风罩的捕集效率分析及优化设计[J]. 环境工程,2015,33(1):90-94.
    [33] MA G D,HUANG X M,ZHU T L,et al. Air pollution control technical manual[M]. Beijing:Chemical Industry Press,2010. 马广大,黄学敏,朱天乐,等. 大气污染控制技术手册[M]. 北京:化学工业出版社,2010.
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-29
  • 录用日期:  2025-01-10
  • 修回日期:  2024-12-20
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回