中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO-XGBoost集成算法的火电厂NO x排放动态预测研究

孙尊强 田一淳 马修元 郑成航 苏楠 杨宏旻

孙尊强, 田一淳, 马修元, 郑成航, 苏楠, 杨宏旻. 基于PSO-XGBoost集成算法的火电厂NO x排放动态预测研究[J]. 环境工程, 2025, 43(12): 178-185. doi: 10.13205/j.hjgc.202512020
引用本文: 孙尊强, 田一淳, 马修元, 郑成航, 苏楠, 杨宏旻. 基于PSO-XGBoost集成算法的火电厂NO x排放动态预测研究[J]. 环境工程, 2025, 43(12): 178-185. doi: 10.13205/j.hjgc.202512020
SUN Zunqiang, TIAN Yichun, MA Xiuyuan, ZHENG Chenghang, SU Nan, YANG Hongmin. Research on dynamic prediction of NO x emission of thermal power plants based on PSO-XGBoost ensemble algorithm[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 178-185. doi: 10.13205/j.hjgc.202512020
Citation: SUN Zunqiang, TIAN Yichun, MA Xiuyuan, ZHENG Chenghang, SU Nan, YANG Hongmin. Research on dynamic prediction of NO x emission of thermal power plants based on PSO-XGBoost ensemble algorithm[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(12): 178-185. doi: 10.13205/j.hjgc.202512020

基于PSO-XGBoost集成算法的火电厂NO x排放动态预测研究

doi: 10.13205/j.hjgc.202512020
基金项目: 

国家重点研发计划项目(2022YFC3701504);国家能源集团科技项目(GJNY-23-82)

详细信息
    作者简介:

    孙尊强(1982—),男,博士研究生,高级工程师,长期从事电力环境保护设计研发工作。sunzunqiang@126.com

    通讯作者:

    杨宏旻(1972—),男,教授,博士生导师,主要从事能源高效清洁利用研究工作。yanghongmin@njnu.edu.cn

Research on dynamic prediction of NO x emission of thermal power plants based on PSO-XGBoost ensemble algorithm

  • 摘要: 火电厂NO x 生成单一模型只能基于部分数据特征进行预测模型训练,无法充分挖掘和利用潜在数据价值信息。为有效预测燃煤电厂NO x 排放,提出一种基于皮尔逊相关性分析(Pearson correlation analysis)的方法进行特征筛选,以及一种基于粒子群优化算法(particle swarm optimization,PSO)优化的极端梯度提升(extreme gradient boosting,XGBoost)算法。首先,通过使用皮尔逊相关性分析对各特征进行相关系数计算,并进行特征选择。其次,采用粒子群优化算法对XGBoost模型进行超参数调优,确保模型在不同工况下的鲁棒性和泛化能力。最后,与其他机器学习算法预测结果进行了对比验证。基于某锅炉机组实际数据进行预测,预测值与真实值平均绝对百分比误差MAPE为0.93%,均方根误差RMSE为5.959,平均绝对误差MAE为3.564,决定系数R2为0.97,结果表明改进后的模型NO x 排放预测效果优于其他机器学习算法,显著降低了预测误差,大大提升了模型的准确性与实用性。
  • [1] YOU C Y. Research on monitoring and optimization strategies for carbon dioxide emissions from coal-fired power plants[J]. Resources Economization& Environmental Protection,2024(8):17-21. 尤晨昱. 燃煤电厂二氧化碳排放监测与减排优化策略研究[J]. 资源节约与环保,2024(8):17-21.
    [2] QIU Z L,ZHANG X H,ZHAO D,et al. Analysis of nitrogen oxide generation mechanism and emission control technology in thermal power plants[J]. Journal of Shenyang Institute of Engineering(Natural Science),2023,19(1):23-29. 邱正霖,张小辉,赵頔,等. 火电厂氮氧化物生成机理及排放控制技术分析[J]. 沈阳工程学院学报(自然科学版),2023,19(1):23-29.
    [3] ZHUO J K,JIAO W H,SONG S P,et al. A review on nitrogen oxides prediction model in combustion optimization of boilers[J]. Journal of Combustion Science and Technology,2016,22(6):531-540. 卓建坤,焦伟红,宋少鹏,等. 锅炉燃烧优化中 NOₓ预测模型研究进展[J]. 燃烧科学与技术,2016,22(6):531-540.
    [4] LI Z B,CHEN S Q. Influencing factors of low-temperature SCR denitrification efficiency for coal-fired boiler flue gas[J]. Chemistry& Bioengineering,2024,41(9):57-59. 李子彬,陈绍清. 燃煤锅炉烟气低温 SCR 脱硝效率影响因素研究[J]. 化学与生物工程,2024,41(9):57-59.
    [5] WANG L,HOU Y T,XUE J Z,et al. Principal component analysis-based NO formation prediction for SCR flue gas denitrification system[J]. Thermal Power Generation,2015,44(8):84-89. 王林,侯玉婷,薛建中,等. 基于主元分析的 SCR 烟气脱硝系统入口 NO生成量预测模型[J]. 热力发电,2015,44(8):84-89.
    [6] ZHAO Q. Simulation optimization of SCR flue gas denitrification system and optimal control of ammonia injection amount[D]. Chongqing:Chongqing University,2012. 赵乾. SCR 烟气脱硝系统模拟优化及喷氨量最优控制[D]. 重庆:重庆大学,2012.
    [7] LI Y,ZHUO J K,WU Y F,et al. Interpretable prediction model for NO mass concentration at SCR reactor inlet in coal-fired power plants under flexible operating conditions[J]. Thermal Power Generation,2024,53(7):119-128. 李影,卓建坤,吴逸凡,等. 可解释的变负荷下燃煤机组 SCR 反应器入口 NO质量浓度预测模型[J]. 热力发电,2024,53(7):119-128.
    [8] LIU Y,YU J,JIN X Z. NO mass concentration prediction based on feature optimization and improved LSTM network[J]. Thermal Power Generation,2021,50(7):162-169. 刘岳,于静,金秀章. 基于特征优化和改进长短期记忆神经网络的NO质量浓度预测[J]. 热力发电,2021,50(7):162-169.
    [9] LU Y,LIU J Z,YANG T T,et al. NO emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument,2013,34(11):2418-2424. 吕游,刘吉臻,杨婷婷,等. 基于 PLS 特征提取和 LS-SVM 结合的 NO排放特性建模[J]. 仪器仪表学报,2013,34(11):2418-2424.
    [10] YANG G T,WANG Y N,LI X L,et al. Dynamic prediction of boiler NO x emission based on mutual information variable selection and LSTM[J]. Journal of North China Electric Power University(Natural Science Edition),2020,47(3):66-74. 杨国田,王英男,李新利,等. 基于互信息变量选择与 LSTM 的电站锅炉 NO x 排放动态预测[J]. 华北电力大学学报(自然科学版),2020,47(3):66-74.
    [11] LAN M W,LI Y,ZHAO G Q,et al. Study on boiler combustion modeling based on MAPSO optimizing LSSVM model parameters[J]. Journal of Central South University(Science and Technology),2022,53(4):1506-1515. 蓝茂蔚,李杨,赵国钦,等. 基于 MAPSO 优化 LSSVM 的锅炉燃烧建模研究[J]. 中南大学学报(自然科学版),2022,53(4):1506-1515.
    [12] MA L Y,CHENG S Z,WANG Y J. Application of sine algorithm optimized regularized ELM in boiler NO emission modeling[J]. Journal of North China Electric Power University(Natural Science Edition),2022,49(3):112-118. 马良玉,程善珍,王永军. 正弦算法优化正则化 ELM 在 NO x 排放量建模中的应用[J]. 华北电力大学学报(自然科学版),2022,49(3):112-118.
    [13] WANG B,ZHAO L,ZHAO C C,et al. Prediction of NO x concentration at outlet of SCR denitrification system in thermal power plant based on EMD-SVR[J]. Computer Measurement& Control,2020,28(5):71-75. 王博,赵亮,赵长春,等. 基于 EMD-SVR 的火电厂选择性催化还原脱硝系统出口 NO x 浓度预测研究[J]. 计算机测量与控制,2020,28(5):71-75.
    [14] JIN X Z,ZHANG J,CHEN J Z. NO x emission prediction of thermal power plant based on sparrow search algorithm optimized TPA-LSTM[J]. Control Engineering of China,2024,31(10):1937-1944. 金秀章,张瑾,陈佳政. 基于麻雀搜索算法优化 TPA-LSTM 的火电厂 NO x 排放预测[J]. 控制工程,2024,31(10):1937-1944.
    [15] WANG X,LIU W,WANG Y,et al. A hybrid NO x emission prediction model based on CEEMDAN and AM-LSTM[J]. Fuel,2022,310:121895.
    [16] ZHOU L,ZHU X J. Univariate short-term electrical load based on MA-CNN-LSTM-Self attention[J]. Science Technology and Engineering,2024,24(22):9408-9416. 周磊,竺筱晶. 基于 MA-CNN-LSTM 和自注意力机制的单变量短期电力负荷预测[J]. 科学技术与工程,2024,24(22):9408-9416.
    [17] SUN H B,YANG J G,JIN H W,et al. NO x prediction model for coal-fired boiler based on bayesian optimization and random forest regression[J]. Journal of Chinese Society of Power Engineering,2023,43(7):910-916. 孙胡彬,杨建国,金宏伟,等. 基于贝叶斯优化— 随机森林回归的燃煤锅炉 NO x 预测模型[J]. 动力工程学报,2023,43(7):910-916.
    [18] WANG Y D,LI J H,YUE X,et al. Prediction of main steam pressure of power plant boiler based on CEEMDAN combined with WTD-XGBoost-LSTM[J]. Chinese Journal of Electron Devices,2024,47(3):780-787. 王宇冬,李家翰,岳显,等. 基于 CEEMDAN 混合 WTD-XGBoost-LSTM 的电厂锅炉主蒸汽压力预测[J]. 电子器件,2024,47(3):780-787.
    [19] WEN X Q,LI K C,WANG J G,et al. NO x emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners[J]. Energy,2023,264:126171.
    [20] DUAN H,MENG X,TANG J,et al. NO x emissions prediction for MSWI process based on dynamic modular neural network[J]. Expert Systems with Applications,2024,238:122015.
  • 加载中
计量
  • 文章访问数:  424
  • HTML全文浏览量:  136
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-14
  • 录用日期:  2024-03-15
  • 修回日期:  2024-02-28
  • 网络出版日期:  2026-01-09

目录

    /

    返回文章
    返回