Citation: | YE Guo-jie, WANG Yi-xian, LUO Pei, YANG Xing-zhou, WEI Jing-yue, HU Yun, SERGEI Preis, WEI Chao-hai. FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001 |
GLAZE W H. Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3):224-230.
|
MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment:a critical review[J]. Water Research, 2018, 139:118-131.
|
ROSENFELDT E J, LINDEN K G, CANONICA S, et al. Comparison of the efficiency of·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2[J]. Water Research, 2006, 40(20):3695-3704.
|
STASINAKIS A S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment:a mini review[J]. Global Nest Journal, 2008, 10(3):376-385.
|
AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts:a review[J]. Journal of Hazardous Materials, 2009, 170(2):520-529.
|
BOCZKAJ G, FERNANDES A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions:a review[J]. Chemical Engineering Journal, 2017, 320:608-633.
|
PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science & Technology, 2006, 36(1):1-84.
|
OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment:principles and applications:a review[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(23):2577-2641.
|
WANG J L, XU L J. Advanced oxidation processes for wastewater treatment:formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science & Technology, 2012, 42(3):251-325.
|
CHENG M, LAI C, LIU Y, et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis[J]. Coordination Chemistry Reviews, 2018, 368:80-92.
|
LIN S H, LO C C. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8):2050-2056.
|
陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制[J]. 环境科学, 2000, 21(3):93-96.
|
KAVITHA V, PALANIVELU K. Destruction of cresols by Fenton oxidation process[J]. Water Research, 2005, 39(13):3062-3072.
|
李春娟. 芬顿法和类芬顿法对水中污染物的去除研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
|
YOON J, LEE Y, KIM S. Investigation of the reaction pathway of·OH radicals produced by Fenton oxidation in the conditions of wastewater treatment[J]. Water Science & Technology, 2001, 44(5):15-21.
|
张旋,王启山. 高级氧化技术在废水处理中的应用[J]. 水处理技术, 2009, 35(3):24-28.
|
刘晶冰,燕磊,白文荣,等. 高级氧化技术在水处理的研究进展[J]. 水处理技术, 2011, 37(3):11-17.
|
RUPPERT G, BAUER R, HEISLER G. The photo-Fenton reaction:an effective photochemical wastewater treatment process[J]. Journal of Photochemistry & Photobiology A Chemistry, 1993, 73(1):75-78.
|
ELMOLLA E S, CHAUDHURI M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process[J]. Journal of Hazardous Materials, 2010, 173(1):445-449.
|
BENKELBERG H J, WARNECK P. Photodecomposition of iron(Ⅲ) hydroxo and sulfato complexes in aqueous solution:wavelength dependence of OH and SO4- quantum yields[J]. Journal of Physical Chemistry, 1995, 99(14):5214-5221.
|
WANG Z H, MA W H, CHEN C C, et al. Photochemical coupling reactions between Fe(Ⅲ)/Fe(Ⅱ), Cr(Ⅵ)/Cr(Ⅲ), and polycarboxylates:inhibitory effect of Cr species[J]. Environmental Science & Technology, 2008, 42(19):7260-7266.
|
FENG J Y, HU X J, YUE P L, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction[J]. Water Research, 2003, 37(15):3776-3784.
|
ELMOLLA E, CHAUDHURI M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of Hazardous Materials, 2009, 170(2):666-672.
|
MALATO S, BLANCO J, CáCERES J, et al. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy[J]. Catalysis Today, 2002, 76(2):209-220.
|
HERMOSILLA D, CORTIJO M, HUANG C P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Science of the Total Environment, 2009, 407(11):3473-3481.
|
张乃东,郑威. Fenton法在水处理中的发展趋势[J]. 化工进展, 2001, 20(12):1-3.
|
FOLLER P C, BOMBARD R T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen[J]. Journal of Applied Electrochemistry, 1995, 25(7):613-627.
|
LIU Z P, ZHONG X, AI Z H. Treatment of municipal sewage by electro-Fenton reaction using a nanoscale Fe/ACF composites cathode[J]. Journal of Huazhong Normal University, 2008,1:65-67.
|
方建章,李浩,雷恒毅. 电生成Fenton试剂处理染料废水[J]. 化工环保, 2004, 24(4):284-287.
|
KURT U, APAYDIN O, GONULLU M T. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process[J]. Journal of Hazardous Materials, 2007, 143(1/2):33-40.
|
田法. EDTA改性电-Fenton反应降解DMP的研究[D]. 南昌:南昌大学, 2007.
|
QIANG Z M, CHANG J H, HUANG C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Research, 2002, 36(1):85-94.
|
戴丽雅,张宏波,王谦,等. 超声-芬顿法降解工业染料中间体废水[J]. 水处理技术, 2017(4):76-78,84.
|
MA Y, SUNG C. Investigation of carbofuran decomposition by a combination of ultrasound and Fenton process[J]. Sustainable Environment Research, 2010, 20(4):213-219.
|
GABRIEL J, SHAH V, NESMERAK K, et al. Degradation of polycyclic aromatic hydrocarbons by the copper(Ⅱ)-hydrogen peroxide system[J]. Folia Microbiologic, 2000, 45(6):573-575.
|
BEN-MOSHE T, DROR I, BERKOWITZ B. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts[J]. Applied Catalysis B:Environmental, 2009, 85(3):207-211.
|
FATHY N A, EL-SHAFEY S E, EL-SHAFEY O I, et al. Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):858-864.
|
NEMES A, Fã BIã N I N, GORDON G. Experimental aspects of mechanistic studies on aqueous ozone decomposition in alkaline solution[J]. Ozone Science & Engineering, 2000, 22(3):287-304.
|
BUEHLERR E, STAEHELIN J, HOIGNE J. Ozone decomposition in water studied by pulse radiolysis. 1. perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates[J]. The Journal of Physical Chemistry, 1984, 88(12):2560-2564.
|
周鹏,张静,李旺,等. 天然水体中臭氧链式分解模拟研究[J]. 黑龙江大学自然科学学报, 2013, 30(5):658-663.
|
袁蓉芳,田烨,施春红,等. 臭氧接触池臭氧投加方式的优化[J]. 环境科学研究, 2013, 26(9):1014-1021.
|
HEWES C G, DAVISON R R. Renovation of waste water by ozonation[J]. Water, 1972,69:71-80.
|
BHAT N N, GUROL M D. Oxidation of chlorobenzene by ozone and heterogeneous catalytic ozonation[C]//27th industrial waste mid-at-lantic conference. bethlehem, PA, USA, 1995:371.
|
KASPRZYK-HORDERN B, ZIółEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental, 2003, 46(4):639-669.
|
MA J, GRAHAM N J D. Preliminary investigation of manganese-catalyzed ozonation for the destruction of atrazine[J]. Ozone Science & Engineering, 1997, 19(3):227-240.
|
PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19):4046.
|
RAKITSKAYA T L, ENNAN A A, GRANATYUK I V, et al. Kinetics and mechanism of low-temperature ozone decomposition by Co-ions adsorbed on silica[J]. Catalysis Today, 1999, 53(4):715-723.
|
WU C H, KUO C Y, CHANG C L. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor[J]. Journal of Hazardous Materials, 2008, 154(1):748-755.
|
朱秋实,陈进富,姜海洋,等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4):1010-1014.
|
PINES D S, RECKHOW D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Environmental Science & Technology, 2002, 36(19):4046-4051.
|
BULANIN K M, LAVALLEY J C, Tsyganenko A A. IR spectra of adsorbed ozone[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1995, 101(2/3):153-158.
|
FARIA P C C, óRFãO J J M, PEREIRA M F R. A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids[J]. Catalysis Communications, 2008, 9(11):2121-2126.
|
REN Y M, DONG Q, FENG J, et al. Magnetic porous ferrospinel NiFe2O4:a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water[J]. Journal of Colloid & Interface Science, 2012, 382(1):90-96.
|
KASPRZYK-HORDERN B, ANDRZEJEWSKI P, BROWSKA A D J M, et al. MTBE, DIPE, ETBE and TAME degradation in water using perfluorinated phases as catalysts for ozonation process[J]. Applied Catalysis B:Environmental, 2004, 51(1):51-66.
|
ZHANG T, LI W W, CROUé J P. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water[J]. Applied Catalysis B Environmental, 2012, 121/122(25):88-94.
|
BING J S, HU C, ZHANG L L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J]. Applied Catalysis B Environmental, 2017, 202:118-126.
|
洪浩峰,潘湛昌,徐阁,等. 活性炭负载催化剂臭氧催化氧化处理印染废水研究[J]. 工业用水与废水, 2010, 41(3):29-33.
|
ZHANG F Z, WU K Y, ZHOU H T, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018,224:376-386.
|
WU K Y, ZHANG F Z, WU H Z, et al. The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide[J]. Environmental Science and Pollution Research, 2018, 25(3):2389-2400.
|
MARTIUS R C, CARDOSO M, DANTAS R F, et al. Catalytic studies for the abatement of emerging contaminants by ozonation[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9):1611-1618.
|
ZHANG F Z, WEI C H, HU Y, et al. Zinc ferrite catalysts for ozonation of aqueous organic contaminants:phenol and bio-treated coking wastewater[J]. Separation and Purification Technology, 2015, 156(2):625-635.
|
BELTRáN F J, RIVAS F J, FERNáNDEZ L A, et al. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon[J]. Industrial & Engineering Chemistry Research, 2002, 41(25):6510-6517.
|
ZHANG T, LI C J, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting·OH generation from aqueous ozone:Property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82(1):131-137.
|
RAO Y F, CHU W. Reaction mechanism of linuron degradation in TiO2 suspension under visible light irradiation with the assistance of H2O2[J]. Environmental Science & Technology, 2009, 43(16):6183-6189.
|
VINODGOPAL K, KAMAT P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J]. Environmental Science & Technology, 1995, 29(3):841-845.
|
雷乐成. 水处理高级氧化技术[M]. 哈尔滨:哈尔滨工业大学出版社, 2007.
|
宋爽. 纳米二氧化钛光催化氧化技术处理垃圾渗滤液的研究[D]. 西安:长安大学, 2010.
|
刘祥英,邬腊梅,柏连阳,等. TiO2光催化降解农药研究新进展[J]. 中国农学通报, 2010, 26(12):203-208.
|
LIU M, INDE R, NISHIKAWA M, et al. Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts[J]. ACS Nano, 2014, 8(7):7229-7238.
|
YOU S Z, HU Y, LIU X C, et al. Synergetic removal of Pb(Ⅱ) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light[J]. Applied Catalysis B:Environmental, 2018,232:288-298.
|
BARAN T, MACYK W. Photocatalytic oxidation of volatile pollutants of air driven by visible light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 241(4):8-12.
|
LI S X, FENG Z T, HU Y, et al. In-situ synthesis and high-efficiency photocatalytic performance of Cu(Ⅰ)/Cu(Ⅱ) inorganic coordination polymer quantum sheets[J]. Inorganic Chemistry, 2018, 57(21):13289-13295.
|
LI S X, SUN S L, WU H Z, et al. Effects of electron-donating groups on the photocatalytic reaction of MOFs[J]. Catalysis Science & Technology, 2018, 8(6):1696-1703.
|
MARTINEZ-HUITLE C A, BRILLAS E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:a general review[J]. Applied Catalysis B:Environmental, 2009, 87(3/4):105-145.
|
孙凤坤. 电化学氧化法去除磺胺二甲基嘧啶及其产物研究[D].邯郸:河北工程大学, 2018.
|
MORAES P B, BERTAZZOLI R. Electrodegradation of landfill leachate in a flow electrochemical reactor[J]. Chemosphere, 2005, 58(1):41-46.
|
LIU M, PREIS S, KORNEV I, et al. Pulsed corona discharge for improving treatability of coking wastewater[J]. Journal of Environmental Sciences, 2018, 64(2):306-316.
|
ELEOTéRIO I C, FORTI J C, de Andrade A R. Electrochemical treatment of wastewater of veterinary industry containing antibiotics[J]. Electrocatalysis, 2013, 4(4):283-289.
|
樊广萍,谢江坤,李睦,等. 电化学氧化技术在废水处理中的应用研究[J]. 净水技术, 2016,35(6):30-36.
|
CHEN X M, GAO F R, CHEN G H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation[J]. Journal of Applied Electrochemistry, 2005, 35(2):185-191.
|
ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment:a general review[J]. Chemical Engineering Journal, 2013, 228(14):455-467.
|
LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today, 1999, 53(1):81-91.
|
SHIBAEVA I V, METALITSA D I, DENISOV E T. Oxidation of phenol with molecular oxygen in aqueous solution-2[J]. Kinetics & Catalysis, 1969, 10(6):1022-1026.
|
马明. 湿式氧化法处理含油废水研究[D]. 大庆:东北石油大学, 2017.
|
王健. 催化湿式氧化降解垃圾渗滤液模拟废水的研究[D]. 长春:吉林大学, 2008.
|
石德智,张金露,胡春艳,等. 超临界水氧化技术处理污泥的研究与应用进展[J]. 化工学报, 2017, 68(1):37-49.
|
吴锦华,韦朝海. 催化超临界水氧化废水处理技术的研究进展[J]. 环境工程, 2002, 20(4):7-10.
|
SERIKAWA R M, USUI T, NISHIMURA T, et al. Hydrothermal flames in supercritical water oxidation:investigation in a pilot scale continuous reactor[J]. Fuel, 2002, 81(9):1147-1159.
|
蔡毅,马承愚,彭英利,等. 超临界水氧化法处理丙烯腈剧毒废水的实验研究[J]. 工业水处理, 2006, 26(3):42-44.
|
马承愚,朱飞龙,彭英利,等. 超临界水氧化法处理垃圾渗滤液的试验研究[J]. 中国给水排水, 2008, 24(1):102-104.
|
赵保国,刘玉存,常双君. 超临界水氧化处理二硝基甲苯废水研究[J]. 火炸药学报, 2007, 30(2):71-74.
|