Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 6
Aug.  2020
Turn off MathJax
Article Contents
LI Qiang, GAO Cun-fu, CAO Ying, HE Lian-sheng, LIU Xiao-xue. COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 47-51. doi: 10.13205/j.hjgc.202006008
Citation: LI Qiang, GAO Cun-fu, CAO Ying, HE Lian-sheng, LIU Xiao-xue. COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 47-51. doi: 10.13205/j.hjgc.202006008

COMPARISON AND VERIFICATION OF HEXAVALENT CHROMIUM DETECTION METHODS IN SOLID SAMPLES

doi: 10.13205/j.hjgc.202006008
  • Received Date: 2020-03-13
  • This paper used two kinds of alkaline solution extraction/flame atomic absorption methods, Solid Waste-Determination of Hexavalent Chromium-by Alkaline Digestion/Flame Atomic Absorption Spectrophotometic (HJ 687—2014) and Soil and Sediment-Determination of Cr(Ⅵ)-Alkaline Digestion/Flame Atomic Absorption Spectrometry (HJ 1082—2019). The content of hexavalent chromium in solid waste and soil samples was measured and the experimental procedures, analytical method performance and uncertainty evaluation results of the two methods were compared and verified. The results showed that the detection limit of the HJ 687—2014 method was relatively higher, which was not suitable for the determination of soil with lower concentration. In HJ 1082—2019, it was required to configure the working curve according to the steps of sample preparation, which considered the influence of matrix interference. The detection limit of HJ 687—2014 was 0.28 mg/kg, the relative standard deviation was 0.69%~0.93%, and the sample recovery rate was 95.7%~97.2%. And the detection limit of HJ 1082—2019 was 0.17 mg/kg, the relative standard deviation was 0.6%~3.0%, and the sample recovery rate was 76.0%~83.1%. For the analysis of the same actual sample, the results of the two methods were similar. The detecting results of HJ 687—2014 and HJ 1082—2019 were (48.1±4.2), (46.6±5.4) mg/kg. After comparison, it was found that the main processes affecting the uncertainty of HJ 687—2014 and HJ 1082—2019 were curve fitting and sample digestion, respectively.
  • loading
  • 尹贞,张钧超,廖书林,等. 铬污染场地修复技术研究及应用[J]. 环境工程,2015,33(1):159-162.
    马妍,张美娟,韩聪,等. 我国典型化工污染地块土壤铬污染特征及区域差异[J]. 环境工程,2019,37(9):177-181

    ,170.
    林海兰,谢沙,文卓琼,等. 碱消解-火焰原子吸收法测定土壤和固体废物中六价铬[J]. 分析试验室,2017,36(2):198-202.
    季蕴佳,周勤,方爱红,等. 碱消解-火焰原子吸收分光光度法测定固体废物中的六价铬[J]. 环境监测管理与技术,2012,24(6):57-59.
    KAZAKIS N, KANTIRANIS N, KALAITZIDOU K, et al. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece)[J]. Environmental Pollution, 2018, 235:632-641.
    DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials, 2013, 250-251:272-291.
    赵利刚,蒲生彦,杨金艳,等. 某铬渣堆场周边土壤地下水Cr6+污染特征研究[J]. 环境工程,2015,33(2):117-121.
    许维通,苑文仪,李培中,等. 六价铬污染土壤还原处理后再氧化因素分析综述[J]. 环境工程,2018,36(10):130-134

    ,58.
    徐珍,郭小品,丁怀,等. 欧盟重金属污染防治制度研究[J]. 环境污染与防治,2014,36(8):102-110.
    江传锐,廖宗琼. 土壤和沉积物中六价铬的检测方法研究进展[J]. 广东化工,2019,46(4):99-100.
    易敏,欧伏平. 固体废物六价铬分析样品碱消解快速前处理方法[J]. 环境工程,2010,28(6):87-88.
    马琳娜,李政红,张胜,等. 土壤中六价铬提取方法试验研究[J]. 水文,2010,30(2):11-13.
    MANDIWANA K L. Rapid leaching of Cr(Ⅵ) in soil with Na3PO4 in the determination of hexavalent chromium by electrothermal atomic absorption spectrometry[J]. Talanta, 2008, 74(4):736-740.
    蔡晔,林怡雯,李月娥,等. 土壤和底泥中六价铬提取与检测方法[J]. 实验室研究与探索,2015,34(1):21-25.
    CAPORALE A G, AGRELLI D, RODRIGUEZ G P, et al. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy[J]. Chemosphere, 2019, 233:92-100.
    梁慧贞,李学莲,雷占昌. 电感耦合等离子体质谱法测定地下水中的六价铬[J]. 分析仪器,2017(6):59-61.
    王玉功,刘婧晶,余志峰. 电感耦合等离子体原子发射光谱(ICP-AES)法测定固体废物浸出液与消解液中六价铬[J]. 中国无机分析化学,2019,9(5):1-4.
    马微,周勤,朱林珍,等. 碱消解法测定固体废物中六价铬的研究[J]. 环境保护科学,2012,38(6):41-43.
    张杰芳,闫玉乐,夏承莉,等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试,2017,36(1):46-51.
    周利英,周锦帆,左鹏飞. 六价铬和三价铬的检测技术[J]. 化学通报,2013,76(10):915-922.
    孙友宝,马晓玲,李剑,等. 火焰原子吸收光谱法测定固体废弃物中的六价铬和总铬[J]. 环境化学,2014,33(7):1250-1251.
    丁琮. 2种测定固体废物中六价铬的标准方法的比较分析[J]. 环境卫生工程,2017,25(4):66-68.
    唐甜,王勇,唐红,等. 土壤中六价铬的测定[J]. 四川环境,2017,36(5):123-126.
    陈泽成,庄清雅. 分光光度法测定土壤中六价铬方法优化[J]. 中国环保产业,2018(4):66-68.
    王琳,周勤,马微,等. 碱消解-火焰原子吸收分光光度法测定固体废物中六价铬的干扰消除试验研究[J]. 环境科学与管理,2013,38(6):169-171.
    冷远鹏,薛晓康,章明洪. 土壤碱消解检测六价铬的铬还原问题及质控结果分析[J]. 安徽农业科学,2019,47(21):206-208.
    中国合格评定国家认可委员会. 化学分析中不确定度的评估指南:CNAS-GL006∶2019[S]. 北京:中国计量出版社,2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (171) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return