Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 6
Aug.  2020
Turn off MathJax
Article Contents
YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
Citation: YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029

LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING

doi: 10.13205/j.hjgc.202006029
  • Received Date: 2019-09-25
  • The prediction of PM2.5 can effectively prevent people from the harm by heavy pollution. However, the existing methods often emphasize the influence of local historical information and neglect the effect of spatial transport. In this paper, we proposed a method, called as long-short-term memory-convolutional neural network (LSTM-CNN), to predict PM2.5 concentration of a specific air quality monitoring station over 6 h using historical PM2.5 concentration data, historical weather data, and time stamp data. The model consisted of two parts: 1) using long-short-term memory networks to model the local variation of PM2.5 concentrations caused by local factors; 2) using one-dimensional convolutional neural networks to model the variation of PM2.5 concentrations caused by spatial transport. We randomly selected 7 monitoring stations in urban and rural areas in Beijing from May 1st 2014 to April 30th 2015 to conduct the evaluation of LSTM-CNN model. The results showed that the proposed LSTM-CNN model could provide a better prediction result than LSTM model, and a better result for monitoring stations in rural areas than those in urban areas.
  • loading
  • KIOUMOURTZOGLOU M A,SCHWARTZ J,JAMES P,et al. PM2.5 and mortality in 207 US cities modification by temperature and city characteristics[J]. Epidemiology,2016,27(2): 221-227.
    中华人民共和国环保部.2015中国环境状况公报[Z]. 北京:[2016-06-01

    ].
    CHEN J J,LU J,AVISE J C,et al. Seasonal modeling of PM2.5 in California’s San Joaquin Valley[J]. Atmospheric Environment,2014,92: 182-190.
    WANG Z,MAEDA T,HAYASHI M,et al. A nested air quality prediction modeling system for urban and regional scales: application for high-ozone episode in Taiwan[J]. Water Air & Soil Pollution,2001,130(1/2/3/4): 391-396.
    SAIDE P E,CARMICHAEL G R,SPAK S N,et al. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model[J]. Atmospheric Environment,2011,45(16): 2769-2780.
    LI X,PENG L,YAO X J,et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation[J]. Environmental Pollution,2017,231(1): 997-1004.
    陈宁,毛善君,李德龙,等. 多基站协同训练神经网络的PM2.5预测模型[J]. 测绘科学,2018,241(7): 87-93.
    BOX G E,JENKINS G M. Time series analysis: forecasting and control rev. ed[J]. Journal of Time,1976,31(4): 238-242.
    侯俊雄,李琦,朱亚杰,等. 基于随机森林的PM2.5实时预报系统[J]. 测绘科学,2017,42(1): 1-6.
    GARCÍA NIETO P J,COMBARRO E F,DEL COZ DÍAZ J J,et al. A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study[J]. Applied Mathematics & Computation,2013,219(17): 8923-8937.
    HOOYBERGHS J,MENSINK C,DUMONT G,et al. A neural network forecast for daily average PM10 concentrations in Belgium[J]. Atmospheric Environment,2005,39(18): 3279-3289.
    YU F,ZHANG W F,SUN D Z,et al. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification[J]. Atmospheric Environment,2011,45(11): 1979-1985.
    ZHAO J C,DENG F,CAI Y Y,et al. Long short-term memory-Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere,2019,220: 486-492.
    HUANG C J,KUO P H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors,2018,18(7): 2220-0000.
    LIU X D,LIU Q,ZOU Y Y,et al. A self-organizing LSTM-based approach to PM2.5 forecast[C]//International Conference on Cloud Computing and Security.ACM,2018.
    ZHENG Y,LIU F R,HSIEH H P. U-Air: when urban air quality inference meets big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2013.
    ZHENG Y,CAPRA L,WOLFSON O,et al. Urban computing: concepts, methodologies, and applications[J]. Acm Transactions on Intelligent Systems & Technology,2014,5(3): 1-2.
    ZHENG Y,YI X W,LI M,et al. Forecasting fine-grained air quality based on big data[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.ACM,2015.
    SU X,GOUGH W,SHEN Q.Correlation of PM2.5 and meteorological variables in Ontario cities: statistical downscaling method coupled with artificial neural network[C]//Longhurst J W S, Brebbia C A,Barnes J.24th International Conference on Modelling, Monitoring and Management of Air Pollution,Greece,2016:215-226.
    张佳华,侯英雨,李贵才,等. 北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析[J]. 中国科学:地球科学,2005,35(增刊1): 187-194.
    ZHANG Y X,ZHANG Y M,WANG Y S,et al. PIXE characterization of PM10 and PM2.5 particulate matter collected during the winter season in Shanghai city[J].Journal of Radioanalytical & Nuclear Chemistry,2006,267(2): 497-499.
    王清川,周贺玲,许敏,等. 河北省廊坊市大气污染扩散气象条件影响分析[J]. 防灾科技学院学报,2014,16(3): 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (422) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return