Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
ZHU Heng, DONG Chang-qing, WANG Xiao-dong, ZHU Yan-jun, SHEN Chen, ZHANG Xu-ming, QIN Wu, HU Xiao-ying, ZHANG Jun-jiao, WANG Xiao-qiang, ZHAO Ying, XUE Jun-jie. PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 168-174. doi: 10.13205/j.hjgc.202009027
Citation: ZHU Heng, DONG Chang-qing, WANG Xiao-dong, ZHU Yan-jun, SHEN Chen, ZHANG Xu-ming, QIN Wu, HU Xiao-ying, ZHANG Jun-jiao, WANG Xiao-qiang, ZHAO Ying, XUE Jun-jie. PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 168-174. doi: 10.13205/j.hjgc.202009027

PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST

doi: 10.13205/j.hjgc.202009027
  • Received Date: 2019-11-05
  • With the increasing environmental problems, the removal of nitrogen oxides (NOx) in flue gas has become an urgent problem. In this paper, the cordierite honeycomb-supported denitration catalyst was prepared by simultaneous impregnation method. The effects of vanadium content, temperature, gas hourly space velocity and acid treatment on the denitration efficiency of cordierite-supported denitration catalyst were studied. At the same time, the catalyst was subjected to physical and chemical characterization by means including BET and XRD. The results showed that the supported denitration catalyst could achieve good denitration effect, the denitration efficiency gradually increased with the increase of V2O5 content, as the temperature rose, the efficiency increased first and then decreased; at 340℃, the supported catalyst achieved the best denitration effect, the denitration efficiency was above 98% (the gas hourly space velocity was 18000 h-1); the de-NOx efficiency of sulfuric acid treated catalyst increased by 1~3 percents, while that of hydrochloric acid treated catalyst decreased by 4~8 percents; the loading rate of the supported catalyst was maintained at about 25%, and the shedding rate after ultrasonic treatment was less than 10%.
  • loading
  • FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001, 222(1/2):221-236.
    中华人民共和国环保部. 火电厂大气污染物排放标准:GB 13223-2011[S]. 北京:中国标准出版社, 2011.
    SHANG X S, HU G R, HE C, et al. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1):513-519.
    KHODAYARI R, ODENBRAND C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants[J]. Applied Catalysis B:Environmental, 2001, 30(1):87-99.
    QIU Y, LIU B, DU J, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chemical Engineering Journal, 2016, 294:264-272.
    HOU Y Q, LI Y L, LI Q Y, et al. Insight into the role of TiO2 modified activated carbon fibers for the enhanced performance in low-temperature NH3-SCR[J]. Fuel, 2019, 245:554-562.
    ZHU B Z, LI G B, SUN Y L, et al. De-NOx performance and mechanism of mn-based low-temperature scr catalysts supported on foamed metal nickel[J]. Journal of the Brazilian Chemical Society, 2018, 29(8):1680-1689.
    张华, 胡娟, 周万城,等. 堇青石质蜂窝陶瓷的制备[J]. 硅酸盐学报, 2004, 32(1):24-28.
    GONZÁLEZ-VELASCO J, GUTIERREZ ORTIZ M, FERRET R, et al. Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides[J]. Journal of Materials Science, 1999, 34:1999-2002.
    田柳青, 叶代启. 以堇青石蜂窝陶瓷为载体的新型钒氧化物脱氮催化剂研究[J]. 环境科学, 2004, 25(1):7-13.
    LIU B, DU J, LV X W, et al. Washcoating of cordierite honeycomb with vanadia-tungsta-titania mixed oxides for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology, 2015, 5(2):1241-1250.
    TIAN X, XIAO Y, ZHOU P, et al. Investigation on performance of V2O5-WO3-TiO2-cordierite catalyst modified with Cu, Mn and Ce for urea-SCR of NO[J]. Materials Research Innovations, 2014, 18(sup2):S2-202-S2-206.
    蔺卓玮, 陆强, 唐昊,等. 平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J]. 燃料化学学报, 2017, 45(1):113-122.
    孔明. NaCl与Hg0对V2O5-WO3/TiO2-SCR脱硝催化剂的协同作用研究[J]. 燃烧化学学报, 2015, 43(12):1504-1509.
    CIMINO S, TOTARELLA G, TORTORELLI M, et al. Combined poisoning effect of K+ and its counter-ion (Cl- or NO3-) on MnOx/TiO2 catalyst during the low temperature NH3-SCR of NO[J]. Chemical Engineering Journal, 2017, 330:92-101.
    陈玲霞, 金保升, 李锋, 等. 添加硫酸根对燃煤电厂V2O5基脱硝催化剂性能的影响[J]. 环境科学学报, 2008, 28(2):294-298.
    张秋林, 张金辉, 宁平, 等. SO42-改性对Ce、Ti基催化剂NH3-SCR脱硝性能的影响[J]. 昆明理工大学学报, 2014, 39(6):110-115.
    ABE H, TSUZUKI H, FUKUNAGA A, et al. Preparation of microporous material from cordierite by acid treatment[J]. Key Engineering Materials-KEY ENG MAT, 1996, 115:159-166.
    SOYER S, UZUN A, SENKAN S, et al. A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface[J]. Catalysis Today, 2006, 118(3/4):268-278.
    BLIZNAKOV G, PESHEVA Y, KLISSURSKI D, et al. Methanol oxidation on V2O5-MoO3-TeO3 catalysts[J]. Applied Catalysis, 1987, 29(2):211-218.
    COLTON R J, GUZMAN A M, RABALAIS J W. Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy[J]. Journal of Applied Physics, 1978, 49(1):409-416.
    CHOI S H, CHO S P, LEE J Y, et al. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature[J]. Journal of Molecular Catalysis A:Chemical, 2009, 304(1/2):166-173.
    WIATOWSKA-MROWIECKA J, DE DIESBACH S, MAURICE V, et al. Li-ion intercalation in thermal oxide thin films of MoO3 as Studied by XPS, RBS, and NRA[J]. The Journal of Physical Chemistry C, 2008, 112(29):11050-11058.
    ANWAR M, HOGARTH C A, BULPETT R. An XPS study of amorphous MoO3/SiO films deposited by co-evaporation[J]. Journal of Materials Science, 1990, 25(3):1784-1788.
    ANWAR M, HOGARTH C A, BULPETT R. Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA)[J]. Journal of Materials Science, 1989, 24(9):3087-3090.
    BONDARENKA V, SEREIKA R. XPS study of sol-gel synthesized vanadium-titanium-hydroquinone oxide bronze films[J]. International Letters of Chemistry, Physics and Astronomy, 2015, 54:201-207.
    SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4:role of surface oxygen species on H2 production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446.
    FANG J, BI X Z, SI D J, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science, 2007, 253(22):8952-8961.
    郭凤, 余剑, 初茉. 溶胶-凝胶原位合成宽活性温度V2O5/TiO2脱硝催化剂[J]. 化工学报,2014, 65(6):2098-2105.
    LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. The Journal of Physical Chemistry C, 2010, 114(40):16929-16936.
    REICHE M, MACIEJEWSKI M, BAIKER A. Characterization by temperature programmed reduction[J]. Catalysis Today, 2000, 56:347-355.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (243) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return