Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
SI Guang-zheng, YANG Qing-chen, DONG Jia, YAN Tian-ge, CHANG Jun-jun, CHEN Jin-quan. ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 247-252. doi: 10.13205/j.hjgc.202009040
Citation: SI Guang-zheng, YANG Qing-chen, DONG Jia, YAN Tian-ge, CHANG Jun-jun, CHEN Jin-quan. ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 247-252. doi: 10.13205/j.hjgc.202009040

ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS

doi: 10.13205/j.hjgc.202009040
  • Received Date: 2019-07-09
  • In recent years, soil contaminated with mercury (Hg) has become serious problem on earth, endangering the environment and human health. Therefore, it is urgent to develop a reasonable and effective method to remediate it. Some microorganisms have capacity of adsorption and volatilization for Hg(Ⅱ), and can be applied to the bioremediation of Hg-contaminated environments. In this study, a highly Hg-resistant fungus (DC-F9) was isolated from the heavy metal-contaminated soil with a minimum inhibitory concentration (MIC) of 160 mg/L. The strain belonged to the genus Aspergillus by the phylogenetic analysis of its ITS sequence. In the medium supplemented with Hg(Ⅱ) concentration of 5 mg/L, the volatilization rate, adsorption rate and total removal rate of Hg(Ⅱ) were 36.8%, 58.4%, 95.2% respectively; and they were 45.4%, 40.2%, 85.6% respectively at Hg(Ⅱ) concentration of 10 mg/L. The strain exhibited a variety of physiological changes in response to mercury stress by FTIR analyses. These results showed that the DC-F9 had potentials of bioremediation for Hg-contaminated environment.
  • loading
  • NASCIMENTO A M A, CHARTONE-SOUZA E. Operon mer:bacterial resistance to mercury and potential for bioremediation of contaminated environments[J]. Genetics and Molecular Research, 2003, 2(1):92-101.
    CHIEN M, NAKAHATA R, ONO T, et al. Mercury removal and recovery by immobilized Bacillus megaterium MB1[J]. Frontiers of Chemical Science and Engineering, 2012, 6(2):192-197.
    ZAHIR F, RIZWI S J, HAQ S K, et al. Low dose mercury toxicity and human health[J]. Environmental Toxicology and Pharmacology, 2005, 20(2):351-360.
    LI P, FENG X B, QIU G L, et al. Mercury pollution in Asia:a review of the contaminated sites[J]. Journal of Hazardous Materials, 2009, 168(2/3):591-601.
    MAHBUB K R, KRISHNAN K, MEGHARAJ M, et al. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil[J]. Chemosphere, 2016, 144:330-337.
    WAGNER-DOBLER I. Bioremediation of Mercury:Current Research and Industrial Applications[M]. Poole:Caister Academic Press, 2013:2-6.
    王新, 周启星. 重金属与土壤微生物的相互作用及污染土壤修复[J]. 环境工程学报, 2004, 5(11), 1-5.
    刘平, 仇广乐, 商立海. 汞污染土壤植物修复技术研究进展[J]. 生态学杂志, 2007, 26(6):933-937.
    VELÁSQUEZ-RIAÑO M, BENAVIDES-OTAYA H D. Bioremediation techniques applied to aqueous media contaminated with mercury[J]. Critical Reviews in Biotechnology, 2016, 36(6):1124-1130.
    邹鲤岭, 杨加庆, 程先锋, 等. 云南土壤和白菜重金属东川小江沿岸农田污染研究[J]. 西南农业学报, 2018, 31(4):754-758.
    BLOOM N, FITZGERALD W F. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection[J]. Analytica Chimica Acta, 1988, 208(1/2):151-161.
    WU D, ZHANG Z P, GAO Q L, et al. Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China[J]. World Journal of Microbiology and Biotechnology, 2018, 34(12):177.
    卢福芝, 李启虔, 何海燕, 等. 一株抗镉真菌的分离鉴定及特性研究[J]. 环境工程, 2016, 34(4):64-67.
    姜雨萌, 牛永春, 邓晖. rDNA ITS序列在ACCC真菌鉴定中的应用[J]. 微生物学通报, 2016, 43(5):942-947.
    BELLEMAIN E, CARLSEN T, BROCHMANN C, et al. ITS as an environmental DNA barcode for fungi:an in silico approach reveals potential PCR biases[J]. BMC Microbiology, 2010, 10(1):189.
    FRANÇOIS F, LOMBARD C, GUIGNER J M, et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury[J]. Applied and Environmental Microbiology, 2012, 78(4):1097-1106.
    SENEVIRATNE M, GUNARATNE S, BANDARA T, et al. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress[J]. South African Journal of Botany, 2016, 105:19-24.
    KURNIATI E, ARFARITA N, IMAI T, et al. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil[J]. Journal of Environmental Sciences, 2014, 26(6):1223-1231.
    ZAFAR S, AQIL F, AHMAD I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil[J]. Bioresource Technology, 2007, 98(13):2557-2561.
    韩桂云, 齐玉臣, 刘忱, 等. 温度、pH对菌根真菌生长影响的研究[J]. 生态学杂志, 1993,12(1):15-19.
    魏景超. 真菌鉴定手册[M]. 上海:上海科学技术出版社,1979:498-499.
    BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3):355-384.
    DASH H R, DAS S. Bioremediation of mercury and the importance of bacterial mer genes[J]. International Biodeterioration & Biodegradation, 2012, 75:207-213.
    JIMÉNEZ-MORENO M, PERROT V, EPOV V N, et al. Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg (Ⅱ) by methylcobalamin in aqueous chloride media[J]. Chemical Geology, 2013, 336:26-36.
    MARTÍNEZ-JUÁREZ V M, CÁRDENAS-GONZÁLEZ J F, TORRE-BOUSCOULET M E, et al. Biosorption of mercury (Ⅱ) from aqueous solutions onto fungal biomass[J]. Bioinorganic Chemistry and Applications, 2012:1-5.
    OYETIBO G O, ISHOLA S T, IKEDA-OHTSUBO W, et al. Mercury bioremoval by Yarrowia strains isolated from sediments of mercury-polluted estuarine water[J]. Applied Microbiology and Biotechnology, 2015, 99(8):3651-3657.
    OUST A, MØRETRØ T, KIRSCHNER C, et al. FT-IR spectroscopy for identification of closely related lactobacilli[J]. Journal of Microbiological Methods, 2004, 59(2):149-162.
    黄晓婷, 马义丽, 李有志. 微紫青霉菌Penicillium janthinellum菌株GXCR吸附废水中Cd2+的研究[J]. 菌物学报, 2009, 28(6):850-856.
    MECOZZI M, PIETROLETTI M, DI MENTO R. Application of FTIR spectroscopy in ecotoxicological studies supported by multivariate analysis and 2D correlation spectroscopy[J]. Vibrational Spectroscopy, 2007, 44(2):228-235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (386) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return