Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 38 Issue 10
Nov.  2020
Turn off MathJax
Article Contents
GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
Citation: GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013

NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL

doi: 10.13205/j.hjgc.202010013
  • Received Date: 2020-07-17
  • Exploring the influence of parameter sensitivity and uncertainty of the hydrological model on runoff simulation has considerable significance. This study used the SWAT model to simulate the surface runoff process in the Naoli River Basin. The SUFI-2 method was used to evaluate the influence of the model parameter sensitivity and uncertainty on the simulation results, while the coefficient of determination (R2) and Nash-Sutcliffe efficiency coefficient (ENS) were selected to evaluate the accuracy of the model. The sensitivity analysis results showed that the four parameters, including the number of CN2.mgt, SLSUBBSN.hru, SOL_BD.sol, and SOL_K.sol were the most significant parameters for the runoff simulation of Naoli River Basin. It showed that CN2, soil and topography were the most important factors affecting the runoff of Naoli River Basin. The monthly runoff simulation process fitted well with the measured hydrological process, and the R2 and ENS were 0.68, 0.67 and 0.76, 0.44 during the period calibration and validation periods, respectively, which reached satisfactory level. The results of uncertainty analysis showed that the p-factor was 0.78 and the r-factor was 0.94, indicating that there was less uncertainty, which further verified the applicability of the model. The results could provide references for SWAT model application and parameter calibration in other similar basins.
  • loading
  • 赵彦军,徐宗学,谭秋阳,等. 深圳市降水特征时空演变规律分析[J]. 北京师范大学学报(自然科学版),2019,55(5):564-571.
    左斌斌,徐宗学,任梅芳,等. 北京市通州区1966-2016年降水特性研究[J]. 北京师范大学学报(自然科学版),2019,55(5

    ):556-563.
    GIRI S, NEJADHASHEMI A P, WOZNICKI S A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed[J]. Journal of Environmental Management, 2012, 103:24-40.
    KROGH S A, POMEROY J W, MARSH P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model[J]. Journal of Hydrology, 2017, 550:685-703.
    程红光,岳勇,杨胜天,等. 黄河流域非点源污染负荷估算与分析[J]. 环境科学学报,2006(3):384-391.
    丁洋,赵进勇,徐征和,等. 基于SWAT模型的平原河湖水网区小流域径流过程模拟[J]. 水生态学杂志,2019,40(2):7-13.
    ALBERTO M S, CARMELO C G. Suitability of the SWAT model for simulating water discharge and sediment load in a karst watershed of the Semiarid Mediterranean Basin[J]. Water Resources Management, 2020, 34(2):785-802.
    KHOI D N, THOM V T. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam[J]. Global Ecology and Conservation, 2015(4):538-548.
    杨军军,高小红,李其江,等. 湟水流域SWAT模型构建及参数不确定性分析[J]. 水土保持研究,2013,20(1):2-88

    ,93.
    ZHANG S T, LIU Y, LI M, et al. Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow[J]. Water Science Technology, 2016(9):249-255.
    宋增芳,曾建军,金彦兆,等. 基于SWAT模型和SUFI-2算法的石羊河流域月径流分布式模拟[J]. 水土保持通报,2016,36(5):172-177.
    万浩,董晓华,彭涛,等. 基于SWAT模型和SUFI-2算法的黄柏河东支流域径流模拟研究[J]. 中国农村水利水电,2018,(12):94-100.
    姚允龙,王蕾. 基于SWAT的典型沼泽性河流径流演变的气候变化响应研究:以三江平原挠力河为例[J]. 湿地科学,2008,(2):198-203.
    LIU G H, HE Z M, LUAN Z Q. Intercomparison of a lumped model and a distributed model for streamflow simulation in the Naoli River Watershed, Northeast China[J]. Water, 2018, 10(8):1004.
    贾思达. 三江平原松花江-挠力河流域地下水与地表水转化关系研究[D]. 长春:吉林大学,2019.
    童成立,张文菊,汤阳,等. 逐日太阳辐射的模拟计算[J]. 中国农业气象,2005(3):165-169.
    刘博,徐宗学. 基于SWAT模型的北京沙河水库流域非点源污染模拟[J]. 农业工程学报,2011,27(5):52-61

    ,401.
    庞靖鹏. 非点源污染分布式模拟[D]. 北京:北京师范大学,2007.
    MOTOVILOV Y G, GOTTSCHALK L, ENGELAND K, et al. Validation of a distributed hydrological model against spatial observations[J]. Agricultural and Forest Meteorology, 1999, 98/99:257-277.
    NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I:a discussion of principles[J]. Journal of Hydrology, 1970, 10:282-290.
    ABBASPOUR K C, YANG J, MAXIMOV I, et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT[J]. Journal of Hydrology, 2007, 333(2/3/4):413-430.
    ENGEBRETSEN A, VOGT R D, BECHMANN M. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices[J]. Catena, 2019, 175:154-166.
    RAIHAN F, BEAUMONT L J, MAINA J, et al. Simulating streamflow in the Upper Halda Basin of southeastern Bangladesh using SWAT model[J]. International Association of Scientific Hydrology Bulletin, 2020, 65(1):138-151.
    左德鹏,徐宗学. 基于SWAT模型和SUFI-2算法的渭河流域月径流分布式模拟[J]. 北京师范大学学报(自然科学版),2012,48(5):490-496.
    周帅,王义民,郭爱军,等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版),2019,47(8):144-154.
    李谦,张静,宫辉力. 基于SUFI-2算法和SWAT模型的妫水河流域水文模拟及参数不确定性分析[J]. 水文,2015,35(3):43-48.
    LIU R, XU F, ZHANG P, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 2016, 533:379-388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (347) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return