Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Di, CHEN Yao, LV Bo. CHARACTERISTICS AND OPTIMIZATION APPROACH FOR REMOVAL OF DISSOLVED POLLUTANTS IN BIORETENTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 120-127. doi: 10.13205/j.hjgc.202010019
Citation: LI Di, CHEN Yao, LV Bo. CHARACTERISTICS AND OPTIMIZATION APPROACH FOR REMOVAL OF DISSOLVED POLLUTANTS IN BIORETENTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 120-127. doi: 10.13205/j.hjgc.202010019

CHARACTERISTICS AND OPTIMIZATION APPROACH FOR REMOVAL OF DISSOLVED POLLUTANTS IN BIORETENTION SYSTEMS

doi: 10.13205/j.hjgc.202010019
  • Received Date: 2020-07-10
  • The removal of dissolved pollutants such as nitrogen and phosphorus, heavy metals and pathogenic bacteria in bioretention systems are highly variable and even leaching out from the system. And the removal characteristic is affected by the inherent characteristics and surrounding environment of bioretention systems. Although lots of optimized researches on pollution-control capacity of bioretention systems have been carried out, and some relevant optimization measures have been proposed, these measures are mainly focused on single pollutant. No comprehensive optimization scheme of bioretention systems can meet the removal requirements of multi-target pollutants. Therefore, in this paper, removal pathways of dissolved pollutants in bioretention systems were introduced in detail as the main line, and optimization approaches for dissolved pollutants removal were comprehensively analyzed in terms of plants, fillers, configurations, and operation modes of bioretention facilities, combining with analysis on the factors influencing removal characteristics. This review is aim to establish comprehensive optimization approaches from conceptual innovations, and then it can help to achieve stable and efficient removal of multi-target pollutants in bioretention systems.
  • 张军, 董彩丽, 朱良盼, 等. 设计配置对生物滞留设施污染物去除性能的影响研究[J]. 环境工程, 2016, 34(9):26-30.
    LEFEVRE G H, PAUS K, NATARAJAN P, et al. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells[J]. Journal of Environmental Engineering, 2015,141(1):401-405.
    CHURCH S P. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools[J]. Landscape and Urban Planning, 2015, 134:229-240.
    WADZUK B M, HICKMAN J M, TRAVER R G. Understanding the role of evapotranspiration in bioretention[J]. Mesocosm Study, 2015, 1(2):4001-4002.
    CHANDRASENA G I, DELETIC A, MCCARTHY D T. Survival of Escherichia coli in stormwater biofilters[J]. Environmental Science and Pollution Research, 2014, 21(8):5391-401.
    XIONG J Q, REN S H, HE Y F, et al. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment[J]. Chemosphere, 2019, 237:124424.
    颜子钦, 李立青, 刘雨情, 等. 设置饱和带对生物滞留去除地表径流中N、P的影响[J]. 中国给水排水, 2017, 33(11):33-38.
    赵倩, 许仕荣, 周永潮, 等. 生物质炭改良生物滞留系统去除氮素的试验研究[J]. 中国给水排水, 2019, 35(1):96-101.
    POOR C J, CONKLE K, MACDONALD A, et al. Water treatment residuals in bioretention planters to reduce phosphorus levels in stormwater[J]. Environmental Engineering Science, 2019, 36(3):265-272.
    许萍, 何俊超, 张建强, 等. 生物滞留强化脱氮除磷技术研究进展[J]. 环境工程, 2015, 33(11):21-5

    +30.
    PAYNE E G, FLETCHER T D, RUSSELL D G, et al. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. Plos One, 2014, 9(3):1-12.
    LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science & Technology, 2014, 48(6):3403-3410.
    仇付国, 王珂, 李林彬, 等. 滞留时间和进水有机物对生物滞留系统除氮的影响[J]. 科学技术与工程, 2018, 18(4):197-202.
    李海燕, 罗艳红, 马玲. 生物滞留设施对地表径流中磷去除效果的研究述评[J]. 中国水土保持, 2014(6):26-31,69.
    李立青, 刘雨情, 杨佳敏, 等. 生物滞留对城市地表径流磷的去除途径[J]. 环境科学, 2018, 39(7):3150-3157.
    FOWDAR H S, HATT B E, CRESSWELL T, et al. Phosphorus fate and dynamics in greywater biofiltration systems[J]. Environmental Science & Technology, 2017, 51(4):2280-2287.
    LIU J Y, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014, 48(1):607-614.
    LI J K, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90:141-155.
    姜登岭, 张丹荣, 何连生, 等. 生物滞留设施净化城市面源污染研究进展[J]. 环境工程技术学报, 2019, 9(1):96-102.
    BORTOLUZZI E C, PÉREZ C A S, ARDISSON J D, et al. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils[J]. Applied Clay Science, 2015, 104:196-204.
    ZHANG B H, LI J K, LI Y J, et al. Adsorption characteristics of several bioretention-modified fillers for phosphorus[J]. Water, 2018, 10(7):831.
    ZHOU Z J, XU P, CAO X Y, et al. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters[J]. Bioresource Technology, 2016, 218:842-849.
    HUNT W F, JARRETT A R, SMITH J T, et al. Evaluating bioretention hydrology and nutrient removal at Three Field Sites in North Carolina[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(6):600-608.
    马效芳, 陶权, 姚景, 等. 生物滞留池用于城市雨水径流控制研究现状和展望[J]. 环境工程, 2015, 33(6):6-9

    ,29.
    仇付国, 代一帆, 卢超, 等. 基质改良和结构优化强化雨水生物滞留系统除污[J]. 中国给水排水, 2017, 33(7):157-162.
    SARI A, SUWARTHA N, HARTONO D, et al. Enhancing removal efficiency of heavy metals and ammonia in bioretention system using quartz sand and zeolite as filter media[J]. IOP Conference Series:Materials Science and Engineering, 2019, 536:012071.
    HASANY S M, AHMAD R. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection[J]. Journal of Environmental Management, 2006, 81(3):286-295.
    JANG A, SEO Y, BISHOP P L. The removal of heavy metals in urban runoff by sorption on mulch[J]. Environmental Pollution, 2005, 133(1):117-127.
    钱佳欢, 滕俊伟, 张海平. 生物滞留设施去除模拟道路径流中典型重金属的中试[J]. 净水技术, 2016, 35(1):88-91.
    王建龙, 杨丽琼, 黄涛. 复合生物滞留介质对雨水径流中重金属净化效果[J]. 环境工程学报, 2015, 9(7):3086-3092.
    杜双磊, 员建, 张静仁, 等. 雨水中病原微生物的控制技术[J]. 净水技术, 2012, 31(1):9-11.
    刘建伟, 何岩, 刘越, 等. 生物滞留系统去除地表径流中病原微生物的研究进展[J]. 环境科学与技术, 2018, 41(10):112-120.
    KIM M H, SUNG C Y, LI M-H, et al. Bioretention for stormwater quality improvement in Texas:removal effectiveness of Escherichia coli[J]. Separation and Purification Technology, 2012, 84:120-124.
    STREHMEL N, BÖTTCHER C, SCHMIDT S, et al. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana[J]. Phytochemistry, 2014, 108:35-46.
    CHANDRASENA G I, SHIRDASHTZADEH M, LI Y L, et al. Retention and survival of E. coli in stormwater biofilters:role of vegetation, rhizosphere microorganisms and antimicrobial filter media[J]. Ecological Engineering, 2017, 102:166-177.
    HRENOVIC J, MILENKOVIC J, IVANKOVIC T, et al. Antibacterial activity of heavy metal-loaded natural zeolite[J]. Hazardous Materials, 2012, 201/202:260-264.
    DAGENAIS D, BRISSON J, FLETCHER T D. The role of plants in bioretention systems:does the science underpin current guidance?[J]. Ecological Engineering, 2018, 120:532-545.
    HERMAWAN A A, TALEI A, LEONG J, et al. Performance assessment of a laboratory scale prototype biofiltration system in tropical region[J]. Sustainability, 2019, 11(7):1947.
    GALBRAITH P, HENRY R, MCCARTHY D. Rise of the killer plants:investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal[J]. Journal of Biological Engineering, 2019, 13:52.
    LE COUSTUMER S, FLETCHER T D, DELETIC A, et al. The influence of design parameters on clogging of stormwater biofilters:a large-scale column study[J]. Water Research, 2012, 46(20):6743-6752.
    ZAKARIA N A, LAU T L, FOO K Y, et al. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area[J]. Urban Water Journal, 2017, 14(2):134-142.
    KOPTSIK G N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils:a review[J]. Eurasian Soil Science, 2014, 47(9):923-939.
    PONIEDZIAŁEK M, SEKARA A, JEDRSZCZYK E, et al. Phytoremediation efficiency of crop plants in removing cadmium, lead and zinc from soil[J]. Folia Horticulturae, 2010, 22(2):25.
    SAKAKIBARA M, OHMORI Y, HA N T H, et al. Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis[J]. Clean Soil Air Water, 2011, 39(8):735-741.
    CHANEY R L, ANGLE J S, BROADHURST C L, et al. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies[J]. Environmental Quality, 2007, 36(5):1429-1443.
    ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
    WU G, KANG H B, ZHANG X Y, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):1-8.
    丁磊, 王萍. 活化沸石除铵及其动力学过程研究[J]. 矿物学报, 2006, 26(1):107-112.
    仇付国, 王珂, 于栋, 等. 沸石改良雨水生物滞留系统去除污染物研究[J]. 环境科学与技术, 2018, 41(3):124-129.
    仇付国, 王瑜. 水厂铝污泥去除水中污染物研究进展[J]. 水处理技术, 2014, 40(6):1-8

    ,13.
    LI Y J, WEN M, LI J K, et al. Reduction and accumulative characteristics of dissolved heavy metals in modified bioretention media[J]. Water, 2018, 10(10):1488.
    IPPOLITO J A, SPOKAS K A, NOVAK J. Biochar elemental composition and factors influencing nutrient retention[M]. New York:Science, Technolody and Implementation, 2015:137-161.
    DEMPSTER D N, JONES D L, MURPHY D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J]. Soil Research, 2012, 50(3):216-221.
    KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (Biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611.
    MOHANTY S K, VALENCA R, BERGER A W, et al. Plenty of room for carbon on the ground:Potential applications of biochar for stormwater treatment[J]. Science of The Total Environment, 2018, 625:1644-1658.
    SHRESTHA P, HURLEY S E, WEMPLE B C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems[J]. Ecological Engineering, 2018, 112:116-131.
    WEN Z P, ZHANG Y L, DAI C M. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:433-440.
    邹诗绮, 王玉蓉, 张建民. 生物滞留设施中添加铁质对磷的去除效果[J]. 环境科学与技术, 2016, 39(增刊2):155-159.
    TIAN J, JIN J, CHIU P C, et al. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater[J]. Water Research, 2019, 148:378-387.
    ANIRUDHAN T S, SREEKUMARI S S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons[J]. Journal of Environmental Sciences, 2011, 23(12):1989-1998.
    LIM H S, LIM W, HU J Y, et al. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems[J]. Journal of Environmental Management, 2015, 147:24-33.
    PINO G H, SOUZA De Mesquita L M, TOREM M L, et al. Biosorption of cadmium by green coconut shell powder[J]. Minerals Engineering, 2006, 19(5):380-387.
    LARMET H, DELOLME C, BEDELL J P. Bacteria and heavy metals concomitant transfer in an infiltration basin:columns study under realistic hydrodynamic conditions[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2007, 5830(28):1-10.
    LE COUSTUMER S, FLETCHER T D, DELETIC A, et al. Hydraulic performance of biofilter systems for stormwater management:influences of design and operation[J]. Journal of Hydrology, 2009, 376(1):16-23.
    PRODANOVIC V, ZHANG K, HATT B, et al. Optimisation of lightweight green wall media for greywater treatment and reuse[J]. Building and Environment, 2018, 131:99-107.
    LI Y L, MCCARTHY D T, DELETIC A. Escherichia coli removal in copper-zeolite-integrated stormwater biofilters:Effect of vegetation, operational time, intermittent drying weather[J]. Ecological Engineering, 2016, 90:234-243.
    LI Y L, MCCARTHY D T, DELETIC A. Stable copper-zeolite filter media for bacteria removal in stormwater[J]. Journal of Hazardous Materials, 2014, 273:222-230.
    朱越, 滕俊伟, 陈瑞弘, 等. 内部蓄水层对生物滞留设施中氮去除效率的中试[J]. 净水技术, 2017, 36(2):26-30.
    仇付国, 代一帆, 付昆明, 等. 生物滞留系统设置内部淹没区对径流污染物去除的影响[J]. 环境工程, 2017, 35(7):7-12.
    夏闻雨, 吕永鹏, 张辰, 等. 美国蚊蝇综合管理措施对海绵城市建设的启示与应用[J]. 给水排水, 2016, 52(12):55-59.
    梁小光, 魏忠庆, 上官海东, 等. 海绵城市建设中生物滞留设施排空时间研究[J]. 给水排水, 2018, 54(11):26-30.
    OSMAN M, WAN YUSOF K, TAKAIJUDIN H, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019, 11:5415.
    GUO J C Y, LUU T M. Operation of cap orifice in a rain garden[J]. Journal of Hydrologic Engineering, 2015, 20(10):06015002.
  • Relative Articles

    [1]LI Zishan, HU Zhiwen, MEI Chuang, BAI Jinjing, ZENG Yan, XIAO Rongbo, WANG Peng, HUANG Fei. EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 165-176. doi: 10.13205/j.hjgc.202410020
    [2]LIU Wei, XU Zhiqiang, LI Hongxing, CAO Chenjie, DONG Wen, FENG Minquan, QI Mingyang, LI Jiangbo, KOU Xiaomei, SHAO Tian. IMMOBILIZATION EFFECT OF SLUDGE BIOCHAR ON HEAVY METALS IN CONTAMINATED DREDGED SEDIMENT IN RIVER CHANNELS IN MINING REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 32-39. doi: 10.13205/j.hjgc.202402004
    [3]HUANG Junlin, LIU Huangrui, YAN Haihu, XI Yunhao, LI Xiang, ZHU Nengwu. POLLUTION CHARACTERISTICS AND RISK ASSESSMENT OF HEAVY METALS AND CHLORIDES IN SOLID WASTE INCINERATION RESIDUES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 134-141. doi: 10.13205/j.hjgc.202408016
    [4]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [5]CHI Shanqing, LIN Caiqiang, WU Ligui, ZOU Xiaoming, HUANG Xiangfeng, ZHANG Haiping, XIE Rongrong, LI Jiabing, WU Qiaofeng, LIU Jia. TEMPORAL AND SPATIAL DISTRIBUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF NUTRIENTS AND ANTIBIOTICS IN URBAN ARTIFICIAL LAKES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 29-36. doi: 10.13205/j.hjgc.202401005
    [6]CHEN Yi, LI Longguo, BAI Ting, CHEN Meng, HUANG Yanchun, FU Bin, LI Naiwen. EVALUATION AND CORRELATION ANALYSIS OF WATER/SEDIMENT POLLUTION STATUS IN CHENGDU SECTION OF THE TUOJIANG RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 144-152. doi: 10.13205/j.hjgc.202407016
    [7]HAO Yan, GONG Yongwei, LI Junqi, WANG Sisi, ZHANG Zhiming. EFFECT OF BIORETENTION SYSTEMS ON REDUCING RUNOFF POLLUTION BASED ON RAINFALL AND RUNOFF CHARACTERISTICS OF BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 16-21,124. doi: 10.13205/j.hjgc.202305003
    [8]ZHANG Yaning, ZHU Weihuang, DONG Ying, WU Xijun, LIU Jing. EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 101-108. doi: 10.13205/j.hjgc.202306014
    [9]PAN Xia, YE Shufan, ZHENG Xiaocha, MA Tingting. PURIFICATION EFFECT OF FOUR PLANT COMBINATIONS ON COMBINED WATER POLLUTION OF EUTROPHICATION AND HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 69-75. doi: 10.13205/j.hjgc.202307010
    [10]LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022
    [11]WANG Chengwen, ZHANG Yong, ZHANG Jiaxin, ZHANG Hui. SPATIAL DISTRIBUTION OF SEDIMENT NUTRIENTS IN A WETLAND WITH RECLAIMED WATER SUPPLEMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 87-92,104. doi: 10.13205/j.hjgc.202301011
    [12]LI Yong, FENG Jiacheng, LI Na, SHAN Yajie, QIAN Jianing, XU Hong. APPLICATION OF CHL-A PREDICTION MODEL ARIMA IN OPTIMIZATION OF WATER DIVERSION AND DRAINAGE SCHEME IN LAKE TAIHU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 71-79. doi: 10.13205/j.hjgc.202210010
    [13]DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001
    [14]WU Xiao-jin, LIU Gang, HU Hong-ying, LU Yun. DETECTION OF WATERBORNE PATHOGENS BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 10-17,37. doi: 10.13205/j.hjgc.202112002
    [15]DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
    [17]Chen Yasong, Zhang Chao, Chen Zhenguo, Dong Wenjie, Xu Bingxin. EARLY WARNING OF ACTIVATED SLUDGE INHIBITORY ACTION BY HEAVY METALS BASED ON OXYGEN UPTAKE RATE INDEX[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 27-31. doi: 10.13205/j.hjgc.201502006
    [18]Zhang Jun, Xu Junyang, Wang Dunqiu, Yang Huiping, Wu Xiaohui. EFFECTS OF TYPES AND CONCENTRATIONS OF SULFUR SUBSTRATE ON BIOLEACHING HEAVY METALS FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 39-43. doi: 10.13205/j.hjgc.201504009
    [19]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [20]RESEARCH PROGRESS ON IMMOBILIZATION AND REMOVAL OF HEAVY METALS FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 82-86. doi: 10.13205/j.hjgc.201412014
  • Cited by

    Periodical cited type(9)

    1. 王书敏,童愚,马晓慧,谢畔,张成才,李强. 较长时段尺度下4种配方介质土生物滞留系统的运行机制与效能. 净水技术. 2024(07): 157-166 .
    2. 徐衍超,王亚军,王进喜. 基于多元回归的四环素胁迫下生物滞留池碳排放核算. 中国给水排水. 2023(15): 34-44 .
    3. 刘霖皓,程麒铭,陈垚,袁绍春,吴琼. 生物滞留系统去除典型重金属的影响因素识别. 中国给水排水. 2023(23): 124-132 .
    4. 王亚军,陈甜婧,李金守. 无植物生物滞留池连续运行处理污水的渗流特性实验. 环境工程. 2022(01): 27-31+51 . 本站查看
    5. 薛岳,陈垚,甘春娟,唐杰,刘臻. 生物炭对生物滞留设施运行性能的影响研究进展. 应用化工. 2022(01): 206-211 .
    6. 唐颖辉,陈垚,袁绍春,朱嘉运,刘臻. 不同改良介质土对生物滞留系统运行性能的影响. 中国农村水利水电. 2022(05): 31-37 .
    7. 雷晓玲,邱丽娜,魏泽军,杨程,何博. 海绵城市生物滞留带重金属污染特征及风险评价. 环境科学. 2022(08): 4127-4135 .
    8. 王维,刘臻,陈垚,冯力柯,陈人瑜,郑薪屿. 纤维素固体碳源对雨-灰水双模式生物滞留系统除污性能的影响研究. 中国农村水利水电. 2022(09): 75-82 .
    9. 潘伟亮,罗玲利,王书敏,李强,温灵,周彦. 改良填料生物滞留系统除污效果的季节变化. 环境工程学报. 2021(05): 1763-1772 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.6 %FULLTEXT: 12.6 %META: 84.8 %META: 84.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.9 %其他: 16.9 %其他: 0.4 %其他: 0.4 %China: 1.7 %China: 1.7 %San Mateo: 0.9 %San Mateo: 0.9 %[]: 0.4 %[]: 0.4 %上海: 2.6 %上海: 2.6 %东莞: 3.5 %东莞: 3.5 %临汾: 0.4 %临汾: 0.4 %保定: 0.9 %保定: 0.9 %北京: 3.9 %北京: 3.9 %南京: 0.4 %南京: 0.4 %台州: 0.4 %台州: 0.4 %大连: 0.9 %大连: 0.9 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %安康: 1.3 %安康: 1.3 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 1.3 %张家口: 1.3 %悉尼: 0.9 %悉尼: 0.9 %成都: 1.3 %成都: 1.3 %扬州: 0.4 %扬州: 0.4 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.4 %杭州: 0.4 %武汉: 0.4 %武汉: 0.4 %沧州: 0.4 %沧州: 0.4 %济南: 0.4 %济南: 0.4 %济源: 0.9 %济源: 0.9 %温州: 0.4 %温州: 0.4 %湛江: 0.4 %湛江: 0.4 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 29.9 %芒廷维尤: 29.9 %芝加哥: 3.0 %芝加哥: 3.0 %苏州: 0.9 %苏州: 0.9 %衢州: 0.4 %衢州: 0.4 %西宁: 6.1 %西宁: 6.1 %西安: 1.7 %西安: 1.7 %贵阳: 1.3 %贵阳: 1.3 %运城: 3.5 %运城: 3.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 2.6 %重庆: 2.6 %镇江: 0.4 %镇江: 0.4 %长沙: 0.4 %长沙: 0.4 %长治: 0.4 %长治: 0.4 %其他其他ChinaSan Mateo[]上海东莞临汾保定北京南京台州大连天津太原安康常州常德广州张家口悉尼成都扬州拉贾斯坦邦晋城朝阳杭州武汉沧州济南济源温州湛江漯河石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆镇江长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(6) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return