Citation: | LI Di, CHEN Yao, LV Bo. CHARACTERISTICS AND OPTIMIZATION APPROACH FOR REMOVAL OF DISSOLVED POLLUTANTS IN BIORETENTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 120-127. doi: 10.13205/j.hjgc.202010019 |
张军, 董彩丽, 朱良盼, 等. 设计配置对生物滞留设施污染物去除性能的影响研究[J]. 环境工程, 2016, 34(9):26-30.
|
LEFEVRE G H, PAUS K, NATARAJAN P, et al. Review of dissolved pollutants in urban storm water and their removal and fate in bioretention cells[J]. Journal of Environmental Engineering, 2015,141(1):401-405.
|
CHURCH S P. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools[J]. Landscape and Urban Planning, 2015, 134:229-240.
|
WADZUK B M, HICKMAN J M, TRAVER R G. Understanding the role of evapotranspiration in bioretention[J]. Mesocosm Study, 2015, 1(2):4001-4002.
|
CHANDRASENA G I, DELETIC A, MCCARTHY D T. Survival of Escherichia coli in stormwater biofilters[J]. Environmental Science and Pollution Research, 2014, 21(8):5391-401.
|
XIONG J Q, REN S H, HE Y F, et al. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment[J]. Chemosphere, 2019, 237:124424.
|
颜子钦, 李立青, 刘雨情, 等. 设置饱和带对生物滞留去除地表径流中N、P的影响[J]. 中国给水排水, 2017, 33(11):33-38.
|
赵倩, 许仕荣, 周永潮, 等. 生物质炭改良生物滞留系统去除氮素的试验研究[J]. 中国给水排水, 2019, 35(1):96-101.
|
POOR C J, CONKLE K, MACDONALD A, et al. Water treatment residuals in bioretention planters to reduce phosphorus levels in stormwater[J]. Environmental Engineering Science, 2019, 36(3):265-272.
|
许萍, 何俊超, 张建强, 等. 生物滞留强化脱氮除磷技术研究进展[J]. 环境工程, 2015, 33(11):21-5
+30.
|
PAYNE E G, FLETCHER T D, RUSSELL D G, et al. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. Plos One, 2014, 9(3):1-12.
|
LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environmental Science & Technology, 2014, 48(6):3403-3410.
|
仇付国, 王珂, 李林彬, 等. 滞留时间和进水有机物对生物滞留系统除氮的影响[J]. 科学技术与工程, 2018, 18(4):197-202.
|
李海燕, 罗艳红, 马玲. 生物滞留设施对地表径流中磷去除效果的研究述评[J]. 中国水土保持, 2014(6):26-31,69.
|
李立青, 刘雨情, 杨佳敏, 等. 生物滞留对城市地表径流磷的去除途径[J]. 环境科学, 2018, 39(7):3150-3157.
|
FOWDAR H S, HATT B E, CRESSWELL T, et al. Phosphorus fate and dynamics in greywater biofiltration systems[J]. Environmental Science & Technology, 2017, 51(4):2280-2287.
|
LIU J Y, DAVIS A P. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention[J]. Environmental Science & Technology, 2014, 48(1):607-614.
|
LI J K, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90:141-155.
|
姜登岭, 张丹荣, 何连生, 等. 生物滞留设施净化城市面源污染研究进展[J]. 环境工程技术学报, 2019, 9(1):96-102.
|
BORTOLUZZI E C, PÉREZ C A S, ARDISSON J D, et al. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils[J]. Applied Clay Science, 2015, 104:196-204.
|
ZHANG B H, LI J K, LI Y J, et al. Adsorption characteristics of several bioretention-modified fillers for phosphorus[J]. Water, 2018, 10(7):831.
|
ZHOU Z J, XU P, CAO X Y, et al. Efficiency promotion and its mechanisms of simultaneous nitrogen and phosphorus removal in stormwater biofilters[J]. Bioresource Technology, 2016, 218:842-849.
|
HUNT W F, JARRETT A R, SMITH J T, et al. Evaluating bioretention hydrology and nutrient removal at Three Field Sites in North Carolina[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(6):600-608.
|
马效芳, 陶权, 姚景, 等. 生物滞留池用于城市雨水径流控制研究现状和展望[J]. 环境工程, 2015, 33(6):6-9
,29.
|
仇付国, 代一帆, 卢超, 等. 基质改良和结构优化强化雨水生物滞留系统除污[J]. 中国给水排水, 2017, 33(7):157-162.
|
SARI A, SUWARTHA N, HARTONO D, et al. Enhancing removal efficiency of heavy metals and ammonia in bioretention system using quartz sand and zeolite as filter media[J]. IOP Conference Series:Materials Science and Engineering, 2019, 536:012071.
|
HASANY S M, AHMAD R. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection[J]. Journal of Environmental Management, 2006, 81(3):286-295.
|
JANG A, SEO Y, BISHOP P L. The removal of heavy metals in urban runoff by sorption on mulch[J]. Environmental Pollution, 2005, 133(1):117-127.
|
钱佳欢, 滕俊伟, 张海平. 生物滞留设施去除模拟道路径流中典型重金属的中试[J]. 净水技术, 2016, 35(1):88-91.
|
王建龙, 杨丽琼, 黄涛. 复合生物滞留介质对雨水径流中重金属净化效果[J]. 环境工程学报, 2015, 9(7):3086-3092.
|
杜双磊, 员建, 张静仁, 等. 雨水中病原微生物的控制技术[J]. 净水技术, 2012, 31(1):9-11.
|
刘建伟, 何岩, 刘越, 等. 生物滞留系统去除地表径流中病原微生物的研究进展[J]. 环境科学与技术, 2018, 41(10):112-120.
|
KIM M H, SUNG C Y, LI M-H, et al. Bioretention for stormwater quality improvement in Texas:removal effectiveness of Escherichia coli[J]. Separation and Purification Technology, 2012, 84:120-124.
|
STREHMEL N, BÖTTCHER C, SCHMIDT S, et al. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana[J]. Phytochemistry, 2014, 108:35-46.
|
CHANDRASENA G I, SHIRDASHTZADEH M, LI Y L, et al. Retention and survival of E. coli in stormwater biofilters:role of vegetation, rhizosphere microorganisms and antimicrobial filter media[J]. Ecological Engineering, 2017, 102:166-177.
|
HRENOVIC J, MILENKOVIC J, IVANKOVIC T, et al. Antibacterial activity of heavy metal-loaded natural zeolite[J]. Hazardous Materials, 2012, 201/202:260-264.
|
DAGENAIS D, BRISSON J, FLETCHER T D. The role of plants in bioretention systems:does the science underpin current guidance?[J]. Ecological Engineering, 2018, 120:532-545.
|
HERMAWAN A A, TALEI A, LEONG J, et al. Performance assessment of a laboratory scale prototype biofiltration system in tropical region[J]. Sustainability, 2019, 11(7):1947.
|
GALBRAITH P, HENRY R, MCCARTHY D. Rise of the killer plants:investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal[J]. Journal of Biological Engineering, 2019, 13:52.
|
LE COUSTUMER S, FLETCHER T D, DELETIC A, et al. The influence of design parameters on clogging of stormwater biofilters:a large-scale column study[J]. Water Research, 2012, 46(20):6743-6752.
|
ZAKARIA N A, LAU T L, FOO K Y, et al. Mesocosm study of enhanced bioretention media in treating nutrient rich stormwater for mixed development area[J]. Urban Water Journal, 2017, 14(2):134-142.
|
KOPTSIK G N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils:a review[J]. Eurasian Soil Science, 2014, 47(9):923-939.
|
PONIEDZIAŁEK M, SEKARA A, JEDRSZCZYK E, et al. Phytoremediation efficiency of crop plants in removing cadmium, lead and zinc from soil[J]. Folia Horticulturae, 2010, 22(2):25.
|
SAKAKIBARA M, OHMORI Y, HA N T H, et al. Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis[J]. Clean Soil Air Water, 2011, 39(8):735-741.
|
CHANEY R L, ANGLE J S, BROADHURST C L, et al. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies[J]. Environmental Quality, 2007, 36(5):1429-1443.
|
ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-Concepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
|
WU G, KANG H B, ZHANG X Y, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):1-8.
|
丁磊, 王萍. 活化沸石除铵及其动力学过程研究[J]. 矿物学报, 2006, 26(1):107-112.
|
仇付国, 王珂, 于栋, 等. 沸石改良雨水生物滞留系统去除污染物研究[J]. 环境科学与技术, 2018, 41(3):124-129.
|
仇付国, 王瑜. 水厂铝污泥去除水中污染物研究进展[J]. 水处理技术, 2014, 40(6):1-8
,13.
|
LI Y J, WEN M, LI J K, et al. Reduction and accumulative characteristics of dissolved heavy metals in modified bioretention media[J]. Water, 2018, 10(10):1488.
|
IPPOLITO J A, SPOKAS K A, NOVAK J. Biochar elemental composition and factors influencing nutrient retention[M]. New York:Science, Technolody and Implementation, 2015:137-161.
|
DEMPSTER D N, JONES D L, MURPHY D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J]. Soil Research, 2012, 50(3):216-221.
|
KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (Biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611.
|
MOHANTY S K, VALENCA R, BERGER A W, et al. Plenty of room for carbon on the ground:Potential applications of biochar for stormwater treatment[J]. Science of The Total Environment, 2018, 625:1644-1658.
|
SHRESTHA P, HURLEY S E, WEMPLE B C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems[J]. Ecological Engineering, 2018, 112:116-131.
|
WEN Z P, ZHANG Y L, DAI C M. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:433-440.
|
邹诗绮, 王玉蓉, 张建民. 生物滞留设施中添加铁质对磷的去除效果[J]. 环境科学与技术, 2016, 39(增刊2):155-159.
|
TIAN J, JIN J, CHIU P C, et al. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater[J]. Water Research, 2019, 148:378-387.
|
ANIRUDHAN T S, SREEKUMARI S S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons[J]. Journal of Environmental Sciences, 2011, 23(12):1989-1998.
|
LIM H S, LIM W, HU J Y, et al. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems[J]. Journal of Environmental Management, 2015, 147:24-33.
|
PINO G H, SOUZA De Mesquita L M, TOREM M L, et al. Biosorption of cadmium by green coconut shell powder[J]. Minerals Engineering, 2006, 19(5):380-387.
|
LARMET H, DELOLME C, BEDELL J P. Bacteria and heavy metals concomitant transfer in an infiltration basin:columns study under realistic hydrodynamic conditions[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2007, 5830(28):1-10.
|
LE COUSTUMER S, FLETCHER T D, DELETIC A, et al. Hydraulic performance of biofilter systems for stormwater management:influences of design and operation[J]. Journal of Hydrology, 2009, 376(1):16-23.
|
PRODANOVIC V, ZHANG K, HATT B, et al. Optimisation of lightweight green wall media for greywater treatment and reuse[J]. Building and Environment, 2018, 131:99-107.
|
LI Y L, MCCARTHY D T, DELETIC A. Escherichia coli removal in copper-zeolite-integrated stormwater biofilters:Effect of vegetation, operational time, intermittent drying weather[J]. Ecological Engineering, 2016, 90:234-243.
|
LI Y L, MCCARTHY D T, DELETIC A. Stable copper-zeolite filter media for bacteria removal in stormwater[J]. Journal of Hazardous Materials, 2014, 273:222-230.
|
朱越, 滕俊伟, 陈瑞弘, 等. 内部蓄水层对生物滞留设施中氮去除效率的中试[J]. 净水技术, 2017, 36(2):26-30.
|
仇付国, 代一帆, 付昆明, 等. 生物滞留系统设置内部淹没区对径流污染物去除的影响[J]. 环境工程, 2017, 35(7):7-12.
|
夏闻雨, 吕永鹏, 张辰, 等. 美国蚊蝇综合管理措施对海绵城市建设的启示与应用[J]. 给水排水, 2016, 52(12):55-59.
|
梁小光, 魏忠庆, 上官海东, 等. 海绵城市建设中生物滞留设施排空时间研究[J]. 给水排水, 2018, 54(11):26-30.
|
OSMAN M, WAN YUSOF K, TAKAIJUDIN H, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019, 11:5415.
|
GUO J C Y, LUU T M. Operation of cap orifice in a rain garden[J]. Journal of Hydrologic Engineering, 2015, 20(10):06015002.
|