Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 10
Nov.  2020
Turn off MathJax
Article Contents
ZHOU Li-wei, WANG Hang, LIU Yang-sheng. EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 228-233. doi: 10.13205/j.hjgc.202010036
Citation: ZHOU Li-wei, WANG Hang, LIU Yang-sheng. EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 228-233. doi: 10.13205/j.hjgc.202010036

EFFECT OF ELECTRODE-ORIENTATED ELECTROKINETIC ENHANCEMENT ON PHYTOREMEDIATION ON ARSENIC CONTAMINATED SOIL

doi: 10.13205/j.hjgc.202010036
  • Received Date: 2019-05-22
  • In this paper, the effect of electrode-orientated electrokinetic enhancement on phytoremediation on arsenic contaminated soil was investigated based on Capsicum annuum L. The results showed that soil pH decreased in the control group and increased in the experimental group. The soil arsenic concentration in the control group decreased from (524.1±5.6) mg/kg to (500.5±8.3) mg/kg, and the soil arsenic concentration in different areas of the experimental group was (179.8±10.6), (674.9±5.43), (512.8±7.3) mg/kg, respectively. Compared with the control group, the amount of arsenic absorbed by plants in the experimental group increased by -18.1%, 282.8% and 170.3%, respectively. The ratio of arsenic concentration in soil and rhizosphere in control group and experimental group 1, 2 and 3 was 2.62, 0.64, 1.48 and 1.26, respectively. The electric field increased the arsenic concentration near plant roots. In the control group and the experimental group, the residue arsenic content of the fifth day was 55.64%, 34.99%, 39.06% and 0%. In the soil of experimental group, and near the cathode on the 5th and 10th day of the control group, the proportions of Fe/Al oxide binding state and residue arsenic in the crystallized water were 67.45%, 0% and 8.88%, respectively. It reflected the activation effect of electric field on soil heavy metal forms. The power consumption of the experimental group for 10 days repairing was RMB 79.5/m3, with considerable economical advantages.
  • loading
  • 中国环境保护部等. 全国土壤污染状况调查公报[EB/OL].[2014-04-17]. www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf.
    刘伟,张永波,贾亚敏.重金属污染农田植物修复级强化措施研究进展[J]. 环境工程, 2019, 37(5):29-33

    ,44.
    MCGRATH S P, SIDOLI C M D, BAKER A J M, et al. The Potential for the Use of Metal-Accumulating Plants for the in Situ Decontamination of Metal-Polluted Soils[M].Integrated Soil and Sediment Research:A Basis for Proper Protection. Springer Netherlands, 1993.
    CAMESELLE C, CHIRAKKARA R A, REDDY K R, et al. Electrokinetic-enhanced phytoremediation of soils:Status and opportunities[J]. Chemosphere, 2013, 93(4):626-636.
    O' CONNOR C S, LEPP N W, EDWARDS R, et al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils:a laboratory-scale feasibility study[J]. Environmental Monitoring & Assessment, 2003, 84(1/2):141-158.
    LIM J M, SALIDO A L, BUTCHER D J, et al. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1/2):3-9.
    ZHOU D M, CHEN H F, CANG L, et al. Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field[J]. Chemosphere, 2007, 67(8):1671-1676.
    CANG L, WANG Q Y, ZHOU D M, et al. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard[J]. Separation & Purification Technology, 2011, 79(2):246-253.
    PUTRA R S, OHKAWA Y, TANAKA S, et al. Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis, L.)[J]. Separation & Purification Technology, 2013, 102(1):34-42.
    GOSWAMI C, MAJUMDER A. Arsenic uptake by lemna minor in hydroponic system[J]. International Journal of Phytoremediation, 2014, 16(12):1221-1227.
    TAHMASBIAN I, SINEGANI A A S. Monitoring the effects of chelating agents and electrical fields on active forms of Pb and Zn in contaminated soil[J]. Environmental Monitoring & Assessment, 2013, 185(11):8847-8860.
    ABOUGHALMA H, BI R, SCHLAAK M, et al. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants[J]. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering, 2008, 43(8):926-933.
    BI R, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination[J]. Journal of Applied Electrochemistry, 2010, 40(6):1217-1223.
    ROCHA I M V, SILVA K N O, SILVA D R, et al. Coupling electrokinetic remediation with phytoremediation for depolluting soil with petroleum and the use of electrochemical technologies for treating the effluent generated[J]. Separation and Purification Technology, 2019, 208:194-200.
    REZAEE M, ASADOLLAHFARDI G. An Implicit finite difference model for electrokinetic remediation of cd-spiked kaolinite under acid-enhanced and unenhanced conditions[J]. Environmental Modeling & Assessment, 2019,24(2):235-248.
    GU Y Y, YEUNG A T, LI H J, et al. Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA[J]. Chinese Journal of Chemical Engineering, 2018,26(5):1152-1159.
    LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils:principles and applicability[J]. Science of The Total Environment, 2018, 633:206-219.
    SILVA K N O, PAIVA S S M, SOUZA F L, et al. Applicability of electrochemical technologies for removing and monitoring Pb2+ from soil and water[J]. Journal of Electroanalytical Chemistry, 2018, 816:171-178.
    ANNAMALAI S, SANTHANAM M, SELVARAJ S, et al. "Green technology":Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil[J]. Science of The Total Environment, 2018, 624:1649-1657.
    BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326.
    SULTANA R, KOBAYASHI K, KIM K H, et al. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation[J]. Environmental Monitoring & Assessment, 2015, 187(1):1-9.
    ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E, et al. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158:118-125.
    WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2):309-323.
    李瑞, 吴波, 王卅, 等. 高电场强度下污染土壤电动修复的关键参数分析[J]. 环境工程, 2018, 36(9):154-158.
    PROBSTEIN R F. Physicochemical Hydrodynamics:An Introduction, 2nd ed[M]. Hoboken, NJ:John Wiley & Sons, 2003.
    ACAR Y B, ALSHAWABKEH A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1992, 27(13):2638-2647.
    MYROLD D D. The rhizosphere:biochemistry and organic substances at the soil-plant interface, second edition[J]. Soil Science Society of America Journal, 2008, 72(6):339-353.
    CAMESELLE C. Electrochemical remediation technologies for polluted soils, sediments and groundwater[M]. Springer, 2009.
    纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016,6(1):90-99.
    USEPA. Introduction to Phytoremediation. Report No. EPA/600/R 99/107[R], 2000.
    FARIAS V D, MARANHO L T, VASCONCELOS E C D, et al. Phytodegradation potential of erythrina crista-galliL. Fabaceae, in petroleum-contaminated soil[J]. Applied Biochemistry & Biotechnology, 2009, 157(1):10-22.
    苗林, 王海波. 皖北矿区土壤中重金属时空变化研究[C]//中国煤炭学会矿井地质专业委员会成立三十五周年暨中国煤炭学会矿井地质专业委员会2017年学术论坛, 2017.
    VAMERALI T, BANDIERA M, MOSCA G, et al. Field crops for phytoremediation of metal-contaminated land:a review[J]. Environmental Chemistry Letters, 2010, 8(1):1-17.
    马科峰, 王海芳, 卢静, 等. 电动力强化植物修复土壤重金属的研究进展[J]. 应用化工, 2019,48(3):709-712

    ,716.
    仓龙, 周东美, 吴丹亚, 等. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735.
    赵鹏雷, 毕然. 土壤重金属污染的电动力学联合植物修复技术[J]. 黑龙江科技信息, 2012(10):43-44.
    张军, 蔺亚青, 胡方洁, 等. 土壤重金属污染联合修复技术研究进展[J]. 应用化工, 2018, 47(5):1038-1042

    ,1047.
    魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1):158-164.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (412) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return