Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 38 Issue 11
Apr.  2021
Turn off MathJax
Article Contents
LI Wei, WANG Ke-xin, GONG Zhen-lin, ZHANG Ji-guang, LIU Bao-xia, MA Meng-jie, LAN Ye-qing. EFFICIENT DEGRADATION OF RHODAMINE B BY MICRO-SCALE ZINC-COPPER (mZn/Cu) BIMETALLIC PARTICLES UNDER ACIDIC CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 60-65,52. doi: 10.13205/j.hjgc.202011010
Citation: LI Wei, WANG Ke-xin, GONG Zhen-lin, ZHANG Ji-guang, LIU Bao-xia, MA Meng-jie, LAN Ye-qing. EFFICIENT DEGRADATION OF RHODAMINE B BY MICRO-SCALE ZINC-COPPER (mZn/Cu) BIMETALLIC PARTICLES UNDER ACIDIC CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 60-65,52. doi: 10.13205/j.hjgc.202011010

EFFICIENT DEGRADATION OF RHODAMINE B BY MICRO-SCALE ZINC-COPPER (mZn/Cu) BIMETALLIC PARTICLES UNDER ACIDIC CONDITION

doi: 10.13205/j.hjgc.202011010
  • Received Date: 2019-10-09
    Available Online: 2021-04-23
  • Publish Date: 2021-04-23
  • In this paper, micro-scale zinc-copper (mZn/Cu) bimetallic particles were prepared via replacement reaction and applied in the removal of Rhodamine B. The effects of initial pH, mZn/Cu dosage and initial concentration on the degradation of Rhodamine B were investigated. The optimal conditions for the degradation of of Rhodamine B was determined through single-factor experiment. As compared with single metals, the formation of microbatteries on mZn/Cu greatly improved its ability to provide electrons and its chemical activity, resulting in more efficient degradation of Rhodamine B. When N2 was bubbled into the reaction system to remove the dissolved oxygen and the scavengers such as tert-butyl alcohol (TBA) and benzoquinone (BQ) were introduced, the degradation of Rhodamine B was also greatly inhibited. This proved that under acidic and aerobic conditions, the dissolved oxygen could accepted electrons from the surface of mZn/Cu to produce ·OH and O2-· radicals responsible for the rapid removal of Rhodamine B. Thus, this study not only provided a low-cost and high-efficiency technology for the degradation of organic contaminants in aqueous solution, but also put insight into the mechanism of the reaction.
  • loading
  • 尤宏, 姚杰, 罗薇楠, 等. TiO2/SiO2 催化剂光催化降解罗丹明B的表观动力学[J]. 环境科学, 2006, 27(11):2154-2158.
    王春英, 江桐桐, 周丹, 等. 掺铁钨酸铋的制备及光催化降解罗丹明B的研究[J]. 江西理工大学学报, 2013,34(1):7-12.
    ABBASI M, SOLEYMANI A R, PARSA J B. Degradation of Rhodamine B by an electrochemical ozone generating system consist of a Ti anode coated with nanocomposite of Sn-Sb-Ni oxide[J]. Process Safety and Environmental Protection, 2015, 94:140-148.
    LENG Y Q, GUO W L, SHI X, et al. Degradation of rhodamine B by persulfate activated with Fe3O4:effect of polyhydroquinone serving as an electron shuttle[J]. Chemical Engineering Journal, 2014, 240:338-343.
    HOU M F, LIAO L, ZHANG W D, et al. Degradation of rhodamine B by Fe0-based Fenton process with H2O2[J]. Chemosphere, 2011, 83(9):1279-1283.
    ALHAMEDI F H, RAUF M A, ASHRAF S S. Degradation studies of Rhodamine B in the presence of UV/H2O2[J]. Desalination, 2009, 239(1/2/3):159-166.
    KALLEL M, BELAID C, BOUSSAHEL R, et al. Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide[J]. Journal of Hazardous Materials, 2009, 163(2/3):550-554.
    LIAO C J, CHUNG T L, CHEN W L, et al. Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide[J]. Journal of Molecular Catalysis A:Chemical, 2007, 265(1/2):189-194.
    KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4):1262-1267.
    SUZUKI TASUMA, MORIBE M, OYAMA YUKINORI, et al. Mechanism of nitrate reduction by zero-valent iron:equilibrium and kinetics studies[J]. Chemical Engineering Journal, 2012, 183:271-277.
    WEN G, WANG S J, MA J, et al. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition[J]. Journal of Hazardous Materials, 2014, 275:193-199.
    XU W Y, GAO T Y. Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process[J]. Journal of Environmental Sciences, 2007, 19(7):792-799.
    MA L M, DING Z G, GAO T Y, et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system[J]. Chemosphere, 2004, 55(9):1207-1212.
    LIEN H L, ZHANG W X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al[J]. Chemosphere, 2002, 49(4):371-378.
    LAI B, ZHANG Y H, CHEN Z Y, et al. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles[J]. Applied Catalysis B:Environmental, 2014, 144:816-830.
    JI Q Q, LI J, XIONG Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172:10-20.
    LI W, CHEN C, ZHU J Y, ZHOU LX, Lan Y Q, Efficient removal of aniline by micro-scale zinc-copper (mZn/Cu) bimetallic particles in acidic solution:an oxidation degradation mechanism via radicals[J]. Journal of hazardous materials, 2019, 366:482-491.
    ZHANG J, WU Y, QIN C, et al. Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc[J]. Chemosphere, 2015, 141:258-264.
    XIE H, YE X L, DUAN K Y, et al. CuAu-ZnO-graphene nanocomposite:a novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance[J]. Journal of Alloys and Compounds, 2015, 636:40-47.
    SHU H Y, CHANG M C, CHEN C C, et al. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution[J]. Journal of Hazardous Materials, 2010, 184(1/2/3):499-505.
    QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. Journal of Hazardous Materials, 2011, 193:70-81.
    PENG A, HUANG M Y, CHEN Z Y, et al. Oxidative coupling of acetaminophen mediated by Fe3+-saturated montmorillonite[J]. Science of the Total Environment, 2017, 595:673-680.
    KIM D G, KO S O. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate[J]. Chemosphere, 2018, 191:639-650.
    JUN B M, ELANCHEZHIYAN S S D, YOON Y, et al. Accelerated photocatalytic degradation of rhodamine B over carbonate-rich lanthanum-substituted zinc spinel ferrite assembled reduced graphene oxide by ultraviolet (UV)-activated persulfate[J]. Chemical Engineering Journal, 2020,393:124733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return