Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 38 Issue 12
Apr.  2021
Turn off MathJax
Article Contents
HU Qing, TONG Li-zhi, WANG Hong, GUO Rui-cheng, YANG Gang-ting, XU Sheng-bin. FIELD RAPID SCREENING TECHNOLOGY DRIVEN SOIL SAMPLING OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 163-167,172. doi: 10.13205/j.hjgc.202012027
Citation: HU Qing, TONG Li-zhi, WANG Hong, GUO Rui-cheng, YANG Gang-ting, XU Sheng-bin. FIELD RAPID SCREENING TECHNOLOGY DRIVEN SOIL SAMPLING OPTIMIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 163-167,172. doi: 10.13205/j.hjgc.202012027

FIELD RAPID SCREENING TECHNOLOGY DRIVEN SOIL SAMPLING OPTIMIZATION

doi: 10.13205/j.hjgc.202012027
  • Received Date: 2019-12-10
    Available Online: 2021-04-23
  • A rational soil sampling approach is critical to accurately characterizing potentially contaminated sites. Rapid element screening was applied to a case study for a chromium-contaminated site in Hunan Province. The results were processed by four spatial interpolation methods, including inverse distance weighted (IDW), ordinary kriging (OK), local polynomial interpolation (LPI), and radial basis function (RBF) methods, aiming to compare their accuracy and feasibility on predicting contaminated area. Then, the redundancy analysis was leveraged to determine the number of samples collected for laboratory evaluation. Finally, the results of spatial interpolation between field rapid screening and laboratory analysis were compared. The findings were as follows: 1) the results of predicted contaminated area evaluated by four spatial interpolation methods were significantly different, the accuracy decreased in the qequence of IDW > RBF > OK > LPI; 2) the number of sampling locations needed for laboratory analysis decreased from 245 to 113; and 3) the rapid screening technology was effective in evaluating contamination distribution for chromium-contaminated sites.
  • loading
  • OSMAN K T. Soil Pollution[M]. Springer, Netherlands, 2014.
    LACARCE E, SABY N P A, MARTIN M P, et al. Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics[J]. Geoderma, 2012, 170:359-368.
    李梅,张学雷,武继承. GIS支持下豫东地区土壤野外采样布点方法探索[J]. 土壤,2011,43(3):459-465.
    LI X P, GAO Y, ZHANG M, et al. Heavy metals in urban soil:spatial distribution,source and pollution assessment[J]. Environmental Science & Technology, 2018.
    王子龙,陈伟杰,付强,等. 土壤优化采样策略研究进展[J]. 水土保持通报,2017,37(5):205-212.
    HU W Y, HUANG B, WEINDORF D C, et al. Metals analysis of agricultural soils via portable x-ray fluorescence spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4):420-426.
    MELQUIADES F L, APPOLONI C R. Application of XRF and field portable XRF for environmental analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 262(2):533-541.
    边超,蔡五田,刘金巍,等. FPXRF用于污染场地铬分布特征及迁移规律研究[J]. 环境科学与技术,2017,40(12):126-132.
    赵满,王哲,易发成,等. 基于GIS的某尾矿库区土壤中As元素的研究[J]. 冶金与材料,2018,38(5):94-96.
    KALNICKY D J, SINGHVI R. Field portable XRF analysis of environmental samples[J]. Journal of hazardous materials, 2001, 83(1/2):93-122.
    邝荣禧,胡文友,何跃,等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤,2015,47(3):589-595.
    LI J, HEAP ANDREW D. Spatial interpolation methods applied in the environmental sciences:a review[J]. Environmental Modelling and Software, 2014, 53:173-189.
    XIE Y F, CHEN T B, LEI M, et al. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods:accuracy and uncertainty analysis[J]. Chemosphere, 2010, 82(3):468-476.
    付传城,王文勇,潘剑君,等. 南京市溧水区土壤重金属污染不同插值方法的对比研究[J]. 土壤通报,2014,45(6):1325-1333.
    胡碧峰, 王佳昱, 傅婷婷,等. 空间分析在土壤重金属污染研究中的应用[J]. 土壤通报, 2017, 48(4):1014-1024.
    张金兰,欧阳婷萍,黄铁兰,等. 农田表层土壤镉的典型空间插值方法对比研究[J]. 生态科学,2017,36(6):130-136.
    GOMEZDELACMPO E. GIS:an introduction to mapping technologies[J]. Choice:Current Reviews for Academic Libraries, 2019, 56(11):1384-1384.
    CHEN Y X, JIANG X S, WANG Y, et al. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area:a case study in China[J]. Process Safety & Environmental Protection, 2018, 113:204-219.
    LIAO Y L, LI D Y, ZHANG N X. Comparison of interpolation models for estimating heavy metals in soils under various spatial characteristics and sampling methods[J]. Transactions in GIS, 2018, 22(1).
    ZHANG C S, TANG Y, LUO L, et al. Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land[J]. Environmental Pollution, 2009, 157(11):3083-3090.
    谢云峰,陈同斌,雷梅,等. 空间插值模型对土壤Cd污染评价结果的影响[J]. 环境科学学报,2010,30(4):847-854.
    马宏宏,余涛,杨忠芳,等. 典型区土壤重金属空间插值方法与污染评价[J]. 环境科学,2018,39(10):4684-4693.
    WANG H C, YANG J, LIN H P. Application of RBF networks in mercury pollution spatial prediction of a gold mine area[J]. Advanced Materials Research, 2014,926/930:2771-2776.
    史文娇,岳天祥,石晓丽,等. 土壤连续属性空间插值方法及其精度的研究进展[J]. 自然资源学报,2012,27(1):163-175.
    田美影. 污染场地空间插值的精度评价方法及应用[D]. 北京:首都师范大学, 2013.
    余笑眉,吕晓男,王美琴,等. 南方丘陵耕地土壤有机质空间插值精度比较:以衢江区为例[J]. 浙江农业学报,2010,22(5):639-643.
    ALEXANDRA KRAVCHENKO, DONALD G BULLOCK. A comparative study of interpolation methods for mapping soil properties[J]. Agronomy Journal, 1999, 91(3):393-400.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (190) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return