Citation: | SHANG Xiao-han, ZHU Xiao-biao. HETEROGENEOUS FENTON DEGRADATION OF BENZOTRIAZOLE IN WATER BY Fe/Cu/ZEOLITE CATALYST AT NEUTRAL pH VALUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 10-15. doi: 10.13205/j.hjgc.202102002 |
[1] |
LEE J E, KIM M K, LEE J Y, et al. Degradation kinetics and pathway of 1H-benzotriazole during UV/chlorination process[J]. Chemical Engineering Journal, 2019, 359:1502-1508.
|
[2] |
RICHARDSON S D, TERNES T A, VAN D P. Water analysis:emerging contaminants and current issues[J]. Analytical Chemistry, 2018, 90(1):398-428.
|
[3] |
SONG S J, RUAN T, WANG T, et al. Occurrence and removal of benzotriazole ultraviolet stabilizers in a wastewater treatment plant in China[J]. Environmental Science:Processes & Impacts, 2014, 16(5):1076-1082.
|
[4] |
HART D S J, DAVIS L C, ERICKSON L E, et al. Sorption and partitioning parameters of benzotriazole compounds[J]. Microchemical Journal, 2004, 77(1):9-17.
|
[5] |
张雪. 紫外和紫外/H2O2去除苯并三唑效能研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
|
[6] |
边康玲. 超声-紫外协同强化双氧水降解苯并三氮唑的研究[D]. 杭州:浙江工业大学, 2014.
|
[7] |
DING Y B, YANG C Z, ZHU L H, et al. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole[J]. Journal of Hazardous Materials, 2010, 175(1/2/3):96-103.
|
[8] |
WANG J, LIU C, LI J S, et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst[J]. Applied Catalysis B:Environmental, 2017, 207:316-325.
|
[9] |
WANG Y B, ZHAO H Y, ZHAO G H. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2015, 164:396-406.
|
[10] |
张武,纪妍妍,彭涵,等. FeY型分子筛的高效制备及非均相Fenton催化降解性能[J].高等学校化学学报,2018,39(9):1985-1992.
|
[11] |
NAVALON S, ALVARO M, GARCIA H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):1-26.
|
[12] |
CAO J L, WU Y H, JIN Y P, et al. Response surface methodology approach for optimization of the removal of chromium(Ⅵ) by NH2-MCM-41[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3):860-868.
|
[13] |
王艳,汪建飞,李孝良,等. Fe/沸石对偶氮染料活性黑5的催化降解[J]. 环境工程学报, 2016, 10(8):4177-4183.
|
[14] |
刘萌,吴志杰,潘涛.沸石分子筛酸性质表征方法研究进展[J]. 应用化学, 2020, 37(1):1-15.
|
[15] |
PANDA N, SAHOO H, MOHAPATRA S. Decolourization of methyl orange using Fenton-like mesoporous Fe2O3-SiO2 composite[J]. Journal of Hazardous Materials, 2011, 185(1):359-365.
|
[16] |
LAM F L Y, YIP A C K, HU X J. Copper/MCM-41 as a highly stable and pH-insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of organic wastewater[J]. Industrial & Engineering Chemistry Research, 2007, 46(10):3328-3333.
|
[17] |
HUANG Z P, CHEN Z P, CHEN Y C. Synergistic effects in iron-copper bimetal doped mesoporous γ-Al2O3 for Fenton-like oxidation of 4-chlorophenol structure, composition, electrochemical behaviors and catalytic performance[J]. Chemosphere, 2018,203:442-449.
|
[18] |
AMIR M, ZHI C, FARIBORZ H, et al. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes:a review[J]. Chemosphere, 2017, 174:665-688.
|
[19] |
SUN J H, SUN S P, FAN M H, et al. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process[J]. Journal of Hazardous Materials, 2008, 153(1/2):187-193.
|
[20] |
ARSLAN-ALATON I, TURELI G, OLMEZ-HANCI T. Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 202(2/3):142-153.
|
[21] |
LYU L, ZHANG L L, HU C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J]. Chemical Engineering Journal, 2015, 274:298-306.
|