Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 39 Issue 2
Jul.  2021
Turn off MathJax
Article Contents
YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017
Citation: YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017

GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK

doi: 10.13205/j.hjgc.202102017
  • Received Date: 2020-04-06
    Available Online: 2021-07-19
  • In recent years, the total domestic garbage in China has been increasing at a rate of 10% per year. However, the technology for the classification and treatment of domestic garbage is relatively limited and backward. The classification method based on machine vision has been widely used. Traditional visual classification net currently faces the problems of sophisticated parameters, large amount of calculation, low classification accuracy, and long classification time. Therefore, this paper proposed to use Max-AVE Pooling instead of Max Pooling or AVE Pooling in ResNet-50Bottleneck, and use the depth separable convolution instead of the standard convolution method in ResNet-50Bottleneck to classify junk images. The experimental results showed that the lightweight residual network (MaxAVE-Pooling-MobileNet-18, MAPMobileNet-18) proposed in this paper could significantly reduce the parameter amount by 10 times and the calculation amount by 14 times, and slightly improve the accuracy compared with the classical classification network. It is very suitable for the implementation and application of mobile phones and embedded devices.
  • loading
  • [1]
    张英民,尚晓博,李开明,等.城市生活垃圾处理技术现状与管理对策[J].生态环境学报,2011,20(2):389-396.
    [2]
    孟菁华,刘辉,史学峰,等.垃圾焚烧设施居民暴露吸入性健康风险评价研究[J].环境工程,2018,36(1):128-133.
    [3]
    孙思明.上海市垃圾分类政策执行过程研究[J].现代经济信息,2019(34):496.
    [4]
    "全国垃圾分类"小程序正式上线[J].城乡建设,2019(24):5.
    [5]
    吴健,陈豪,方武.基于计算机视觉的废物垃圾分析与识别研究[J].信息技术与信息化,2016(10):81-83.
    [6]
    黄惠玲,韩军,吴飞斌,等.建筑垃圾的颜色特征提取与分类研究[J].光学与光电技术,2018,16(1):53-57.
    [7]
    吴碧程,邓祥恩,张子憧,等.基于卷积神经网络的智能垃圾分类系统[J].物理实验,2019,39(11):44-49.
    [8]
    金宜英,邴君妍,罗恩华,等.基于分类趋势下的我国生活垃圾处理技术展望[J].环境工程,2019,37(9):149-153

    ,130.
    [9]
    LECUN Y,BOSER B,DENKER J, et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
    [10]
    KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet Classification with Deep Convolutional Neural Networks[C]//NIPS,Curran Associates Inc,2012.
    [11]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv,2014, 1409.1556.
    [12]
    SZEGEDY, C, LIU W, JIA Y Q, et al. Going deeper with convolutions[J]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1-9. DOI: 10.1109/CVPR.2015.7298594.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al.(2016). Deep Residual Learning for Image Recognition[J]. 770-778. DOI: 10.1109/CVPR.2016.90.
    [14]
    IANDOLA, F N, HAN S MOSKEWIQ M W, et al. SqueezeNet:alexNet-level accuracy with 50x fewer parameters and<0.5MB model size[J].
    [15]
    CHOLLET F. Xception:deep learning with depthwise separable convolutions[J]. 1800-1807. DOI: 10.1109/CVPR.2017.195.
    [16]
    ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[J]. 6848-6856. DOI: 10.1109/CVPR.2018.00716.
    [17]
    YU D J, WANG H L, CHEN P Q, et al. Mixed pooling for convolutional neural networks[J]. 364-375. DOI: 10.1007/978-3-319-11740-9_34.
    [18]
    HOWARD A G, ZHU M L, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[C].2017.
    [19]
    HUA, B S,TRAN M K, YEUNG S K. Pointwise convolutional neural networks[J].984-993. DOI: 10.1109/CVPR.2018.00109.
    [20]
    HOWARD, ANDREW, PANG, et al. Searching for MobileNetV3[J]. 1314-1324. DOI: 10.1109/ICCV.2019.00140.
    [21]
    HUANG G, LIU Z, PLEISSG, et al. Convolutional Networks with Dense Connectivity[J].Research Gate, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (405) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return